Notitie
Voor toegang tot deze pagina is autorisatie vereist. U kunt proberen u aan te melden of de directory te wijzigen.
Voor toegang tot deze pagina is autorisatie vereist. U kunt proberen de mappen te wijzigen.
Hiermee verwijdert u dubbele waarden uit de matrix.
Syntaxis
from pyspark.sql import functions as sf
sf.array_distinct(col)
Parameterwaarden
| Kenmerk | Typologie | Description |
|---|---|---|
col |
pyspark.sql.Column of str |
Naam van kolom of expressie |
Retouren
pyspark.sql.Column: Een nieuwe kolom die een matrix is van unieke waarden uit de invoerkolom.
Voorbeelden
Voorbeeld 1: Dubbele waarden verwijderen uit een eenvoudige matrix
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3, 2],)], ['data'])
df.select(sf.array_distinct(df.data)).show()
+--------------------+
|array_distinct(data)|
+--------------------+
| [1, 2, 3]|
+--------------------+
Voorbeeld 2: Dubbele waarden verwijderen uit meerdere matrices
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3, 2],), ([4, 5, 5, 4],)], ['data'])
df.select(sf.array_distinct(df.data)).show()
+--------------------+
|array_distinct(data)|
+--------------------+
| [1, 2, 3]|
| [4, 5]|
+--------------------+
Voorbeeld 3: Dubbele waarden verwijderen uit een matrix met alle identieke waarden
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 1, 1],)], ['data'])
df.select(sf.array_distinct(df.data)).show()
+--------------------+
|array_distinct(data)|
+--------------------+
| [1]|
+--------------------+
Voorbeeld 4: Dubbele waarden uit een matrix verwijderen zonder dubbele waarden
from pyspark.sql import functions as sf
df = spark.createDataFrame([([1, 2, 3],)], ['data'])
df.select(sf.array_distinct(df.data)).show()
+--------------------+
|array_distinct(data)|
+--------------------+
| [1, 2, 3]|
+--------------------+
Voorbeeld 5: Dubbele waarden verwijderen uit een lege matrix
from pyspark.sql import functions as sf
from pyspark.sql.types import ArrayType, IntegerType, StructType, StructField
schema = StructType([
StructField("data", ArrayType(IntegerType()), True)
])
df = spark.createDataFrame([([],)], schema)
df.select(sf.array_distinct(df.data)).show()
+--------------------+
|array_distinct(data)|
+--------------------+
| []|
+--------------------+