Notitie
Voor toegang tot deze pagina is autorisatie vereist. U kunt proberen u aan te melden of de directory te wijzigen.
Voor toegang tot deze pagina is autorisatie vereist. U kunt proberen de mappen te wijzigen.
Vensterfunctie: retourneert de waarde die rijen na de huidige rij is offset en default als er minder dan offset rijen na de huidige rij zijn. Een van de rijen retourneert bijvoorbeeld offset de volgende rij op een bepaald punt in de vensterpartitie.
Dit komt overeen met de LEAD-functie in SQL.
Syntaxis
from pyspark.sql import functions as sf
sf.lead(col, offset=1, default=None)
Parameterwaarden
| Kenmerk | Typologie | Description |
|---|---|---|
col |
pyspark.sql.Column of kolomnaam |
Naam van kolom of expressie. |
offset |
int, optioneel | Het aantal rijen dat moet worden uitgebreid. De standaardinstelling is 1. |
default |
optional | Standaardwaarde. |
Retouren
pyspark.sql.Column: waarde na huidige rij op offsetbasis van .
Voorbeelden
Voorbeeld 1: Lead gebruiken om de volgende waarde op te halen
from pyspark.sql import functions as sf
from pyspark.sql import Window
df = spark.createDataFrame(
[("a", 1), ("a", 2), ("a", 3), ("b", 8), ("b", 2)], ["c1", "c2"])
df.show()
+---+---+
| c1| c2|
+---+---+
| a| 1|
| a| 2|
| a| 3|
| b| 8|
| b| 2|
+---+---+
w = Window.partitionBy("c1").orderBy("c2")
df.withColumn("next_value", sf.lead("c2").over(w)).show()
+---+---+----------+
| c1| c2|next_value|
+---+---+----------+
| a| 1| 2|
| a| 2| 3|
| a| 3| NULL|
| b| 2| 8|
| b| 8| NULL|
+---+---+----------+
Voorbeeld 2: Lead gebruiken met een standaardwaarde
from pyspark.sql import functions as sf
from pyspark.sql import Window
df = spark.createDataFrame(
[("a", 1), ("a", 2), ("a", 3), ("b", 8), ("b", 2)], ["c1", "c2"])
w = Window.partitionBy("c1").orderBy("c2")
df.withColumn("next_value", sf.lead("c2", 1, 0).over(w)).show()
+---+---+----------+
| c1| c2|next_value|
+---+---+----------+
| a| 1| 2|
| a| 2| 3|
| a| 3| 0|
| b| 2| 8|
| b| 8| 0|
+---+---+----------+
Voorbeeld 3: Lead gebruiken met een offset van 2
from pyspark.sql import functions as sf
from pyspark.sql import Window
df = spark.createDataFrame(
[("a", 1), ("a", 2), ("a", 3), ("b", 8), ("b", 2)], ["c1", "c2"])
w = Window.partitionBy("c1").orderBy("c2")
df.withColumn("next_value", sf.lead("c2", 2, -1).over(w)).show()
+---+---+----------+
| c1| c2|next_value|
+---+---+----------+
| a| 1| 3|
| a| 2| -1|
| a| 3| -1|
| b| 2| -1|
| b| 8| -1|
+---+---+----------+