Notitie
Voor toegang tot deze pagina is autorisatie vereist. U kunt proberen u aan te melden of de directory te wijzigen.
Voor toegang tot deze pagina is autorisatie vereist. U kunt proberen de mappen te wijzigen.
Retourneert een niet-geordende matrix die de waarden van de kaart bevat.
Syntaxis
from pyspark.sql import functions as sf
sf.map_values(col)
Parameterwaarden
| Kenmerk | Typologie | Description |
|---|---|---|
col |
pyspark.sql.Column of str |
Naam van kolom of expressie |
Retouren
pyspark.sql.Column: Waarden van de kaart als een matrix.
Voorbeelden
Voorbeeld 1: Waarden extraheren uit een eenvoudige kaart
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, 'a', 2, 'b') as data")
df.select(sf.sort_array(sf.map_values("data"))).show()
+----------------------------------+
|sort_array(map_values(data), true)|
+----------------------------------+
| [a, b]|
+----------------------------------+
Voorbeeld 2: Waarden extraheren uit een kaart met complexe waarden
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, array('a', 'b'), 2, array('c', 'd')) as data")
df.select(sf.sort_array(sf.map_values("data"))).show()
+----------------------------------+
|sort_array(map_values(data), true)|
+----------------------------------+
| [[a, b], [c, d]]|
+----------------------------------+
Voorbeeld 3: Waarden uit een kaart extraheren met null-waarden
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, null, 2, 'b') as data")
df.select(sf.sort_array(sf.map_values("data"))).show()
+----------------------------------+
|sort_array(map_values(data), true)|
+----------------------------------+
| [NULL, b]|
+----------------------------------+
Voorbeeld 4: Waarden uit een kaart extraheren met dubbele waarden
from pyspark.sql import functions as sf
df = spark.sql("SELECT map(1, 'a', 2, 'a') as data")
df.select(sf.map_values("data")).show()
+----------------+
|map_values(data)|
+----------------+
| [a, a]|
+----------------+
Voorbeeld 5: Waarden extraheren uit een lege kaart
from pyspark.sql import functions as sf
df = spark.sql("SELECT map() as data")
df.select(sf.map_values("data")).show()
+----------------+
|map_values(data)|
+----------------+
| []|
+----------------+