Delen via


Door de gebruiker gedefinieerde scalaire functies (UDF's)

Van toepassing op: vinkje als ja aan Databricks Runtime

Door de gebruiker gedefinieerde scalaire functies (UDF's) zijn programmeerbare routines die op één rij reageren. Deze documentatie bevat de klassen die vereist zijn voor het maken en registreren van UDF's. Het bevat ook voorbeelden die laten zien hoe u UDF's definieert en registreert en aanroept in Spark SQL.

UserDefinedFunction klas

Als u de eigenschappen van een door de gebruiker gedefinieerde functie wilt definiëren, kunt u een aantal methoden gebruiken die in deze klasse zijn gedefinieerd.

  • asNonNullable(): UserDefinedFunction: updates UserDefinedFunction naar niet-nullable.
  • asNondeterministic(): UserDefinedFunction: Updates UserDefinedFunction naar niet-deterministisch.
  • withName(name: String): UserDefinedFunction: Updates UserDefinedFunction met een bepaalde naam.

Voorbeelden

Scala

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.udf

val spark = SparkSession
      .builder()
      .appName("Spark SQL UDF scalar example")
      .getOrCreate()

// Define and register a zero-argument non-deterministic UDF
// UDF is deterministic by default, i.e. produces the same result for the same input.
val random = udf(() => Math.random())
spark.udf.register("random", random.asNondeterministic())
spark.sql("SELECT random()").show()
// +-------+
// |UDF()  |
// +-------+
// |xxxxxxx|
// +-------+

// Define and register a one-argument UDF
val plusOne = udf((x: Int) => x + 1)
spark.udf.register("plusOne", plusOne)
spark.sql("SELECT plusOne(5)").show()
// +------+
// |UDF(5)|
// +------+
// |     6|
// +------+

// Define a two-argument UDF and register it with Spark in one step
spark.udf.register("strLenScala", (_: String).length + (_: Int))
spark.sql("SELECT strLenScala('test', 1)").show()
// +--------------------+
// |strLenScala(test, 1)|
// +--------------------+
// |                   5|
// +--------------------+

// UDF in a WHERE clause
spark.udf.register("oneArgFilter", (n: Int) => { n > 5 })
spark.range(1, 10).createOrReplaceTempView("test")
spark.sql("SELECT * FROM test WHERE oneArgFilter(id)").show()
// +---+
// | id|
// +---+
// |  6|
// |  7|
// |  8|
// |  9|
// +---+

Java

import org.apache.spark.sql.*;
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.expressions.UserDefinedFunction;
import static org.apache.spark.sql.functions.udf;
import org.apache.spark.sql.types.DataTypes;

SparkSession spark = SparkSession
      .builder()
      .appName("Java Spark SQL UDF scalar example")
      .getOrCreate();

// Define and register a zero-argument non-deterministic UDF
// UDF is deterministic by default, i.e. produces the same result for the same input.
UserDefinedFunction random = udf(
  () -> Math.random(), DataTypes.DoubleType
);
random.asNondeterministic();
spark.udf().register("random", random);
spark.sql("SELECT random()").show();
// +-------+
// |UDF()  |
// +-------+
// |xxxxxxx|
// +-------+

// Define and register a one-argument UDF
spark.udf().register("plusOne", new UDF1<Integer, Integer>() {
  @Override
  public Integer call(Integer x) {
    return x + 1;
  }
}, DataTypes.IntegerType);
spark.sql("SELECT plusOne(5)").show();
// +----------+
// |plusOne(5)|
// +----------+
// |         6|
// +----------+

// Define and register a two-argument UDF
UserDefinedFunction strLen = udf(
  (String s, Integer x) -> s.length() + x, DataTypes.IntegerType
);
spark.udf().register("strLen", strLen);
spark.sql("SELECT strLen('test', 1)").show();
// +------------+
// |UDF(test, 1)|
// +------------+
// |           5|
// +------------+

// UDF in a WHERE clause
spark.udf().register("oneArgFilter", new UDF1<Long, Boolean>() {
  @Override
  public Boolean call(Long x) {
    return  x > 5;
  }
}, DataTypes.BooleanType);
spark.range(1, 10).createOrReplaceTempView("test");
spark.sql("SELECT * FROM test WHERE oneArgFilter(id)").show();
// +---+
// | id|
// +---+
// |  6|
// |  7|
// |  8|
// |  9|
// +---+