Delen via


Verrijk de gebeurtenissen van Apache Kafka® met kenmerken van ADLS Gen2 met Apache Flink®

Notitie

Op 31 januari 2025 wordt Azure HDInsight buiten gebruik gesteld op AKS. Vóór 31 januari 2025 moet u uw workloads migreren naar Microsoft Fabric of een gelijkwaardig Azure-product om te voorkomen dat uw workloads plotseling worden beëindigd. De resterende clusters in uw abonnement worden gestopt en verwijderd van de host.

Alleen basisondersteuning is beschikbaar tot de buitengebruikstellingsdatum.

Belangrijk

Deze functie is momenteel beschikbaar in preview. De aanvullende gebruiksvoorwaarden voor Microsoft Azure Previews bevatten meer juridische voorwaarden die van toepassing zijn op Azure-functies die bèta, in preview of anderszins nog niet beschikbaar zijn in algemene beschikbaarheid. Zie Azure HDInsight op AKS Preview-informatie voor meer informatie over deze specifieke preview. Voor vragen of suggesties voor functies dient u een aanvraag in op AskHDInsight met de details en volgt u ons voor meer updates in de Azure HDInsight-community.

In dit artikel leert u hoe u de realtime gebeurtenissen kunt verrijken door een stream vanuit Kafka te koppelen aan een tabel in ADLS Gen2 met behulp van Flink Streaming. We gebruiken flink streaming-API om gebeurtenissen uit HDInsight Kafka samen te voegen met kenmerken van ADLS Gen2. Verder gebruiken we gebeurtenissen die zijn toegevoegd aan kenmerken om naar een ander Kafka-onderwerp te gaan.

Vereisten

  • Flink-cluster in HDInsight op AKS
  • Kafka-cluster in HDInsight
    • Zorg ervoor dat de netwerkinstellingen worden uitgevoerd zoals beschreven in Kafka in HDInsight om ervoor te zorgen dat HDInsight op AKS- en HDInsight-clusters zich in hetzelfde VNet bevinden
  • Voor deze demonstratie gebruiken we een windows-VM als maven-project voor het ontwikkelen van een omgeving in hetzelfde VNet als HDInsight in AKS

Kafka-onderwerpvoorbereiding

We maken een onderwerp met de naam user_events.

  • Het doel is om een stream van realtime gebeurtenissen uit een Kafka-onderwerp te lezen met behulp van Flink. We hebben elke gebeurtenis met de volgende velden:
    user_id,
    item_id, 
    type, 
    timestamp, 
    

Kafka 3.2.0

/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic user_events --bootstrap-server wn0-contsk:9092
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic user_events_output --bootstrap-server wn0-contsk:9092

Bestand voorbereiden op ADLS Gen2

Er wordt een bestand gemaakt dat wordt aangeroepen item attributes in onze opslag

  • Het doel is om een batch van item attributes een bestand op ADLS Gen2 te lezen. Elk item heeft de volgende velden:
    item_id, 
    brand, 
    category, 
    timestamp, 
    

Schermopname van het bestand Een batchitemkenmerken voorbereiden op ADLS Gen2.

In deze stap voeren we de volgende activiteiten uit

  • Verrijk het user_events onderwerp van Kafka door lid te worden item attributes van een bestand in ADLS Gen2.
  • We pushen het resultaat van deze stap als een verrijkte gebruikersactiviteit van gebeurtenissen naar een Kafka-onderwerp.

Maven-project ontwikkelen

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>contoso.example</groupId>
    <artifactId>FlinkKafkaJoinGen2</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <flink.version>1.17.0</flink.version>
        <java.version>1.8</java.version>
        <scala.binary.version>2.12</scala.binary.version>
        <kafka.version>3.2.0</kafka.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-files -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-files</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>${flink.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <appendAssemblyId>false</appendAssemblyId>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

Deelnemen aan het Kafka-onderwerp met ADLS Gen2-bestand

KafkaJoinGen2Demo.java

package contoso.example;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.api.java.tuple.Tuple7;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.connector.kafka.sink.KafkaRecordSerializationSchema;
import org.apache.flink.connector.kafka.sink.KafkaSink;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.io.BufferedReader;
import java.io.FileReader;
import java.util.HashMap;
import java.util.Map;

public class KafkaJoinGen2Demo {
    public static void main(String[] args) throws Exception {
        // 1. Set up the stream execution environment
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Kafka source configuration, update with your broker IPs
        String brokers = "<broker-ip>:9092,<broker-ip>:9092,<broker-ip>:9092";
        String inputTopic = "user_events";
        String outputTopic = "user_events_output";
        String groupId = "my_group";

        // 2. Register the cached file, update your container name and storage name
        env.registerCachedFile("abfs://<container-name>@<storagename>.dfs.core.windows.net/flink/data/item.txt", "file1");

        // 3. Read a stream of real-time user behavior event from a Kafka topic
        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
                .setBootstrapServers(brokers)
                .setTopics(inputTopic)
                .setGroupId(groupId)
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStream<String> kafkaData = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "Kafka Source");

        // Parse Kafka source data
      DataStream<Tuple4<String, String, String, String>> userEvents = kafkaData.map(new MapFunction<String, Tuple4<String, String, String, String>>() {
          @Override
          public Tuple4<String, String, String, String> map(String value) throws Exception {
              // Parse the line into a Tuple4
              String[] parts = value.split(",");
              if (parts.length < 4) {
                  // Log and skip malformed record
                  System.out.println("Malformed record: " + value);
                  return null;
              }
              return new Tuple4<>(parts[0], parts[1], parts[2], parts[3]);
           }
       });

        // 4. Enrich the user activity events by joining the items' attributes from a file
        DataStream<Tuple7<String,String,String,String,String,String,String>> enrichedData = userEvents.map(new MyJoinFunction());

        // 5. Output the enriched user activity events to a Kafka topic
        KafkaSink<String> sink = KafkaSink.<String>builder()
                .setBootstrapServers(brokers)
                .setRecordSerializer(KafkaRecordSerializationSchema.builder()
                        .setTopic(outputTopic)
                        .setValueSerializationSchema(new SimpleStringSchema())
                        .build()
                )
                .build();

        enrichedData.map(value -> value.toString()).sinkTo(sink);

        // 6. Execute the Flink job
        env.execute("Kafka Join Batch gen2 file, sink to another Kafka Topic");
    }

    private static class MyJoinFunction extends RichMapFunction<Tuple4<String,String,String,String>, Tuple7<String,String,String,String,String,String,String>> {
        private Map<String, Tuple4<String, String, String, String>> itemAttributes;

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);

            // Read the cached file and parse its contents into a map
            itemAttributes = new HashMap<>();
            try (BufferedReader reader = new BufferedReader(new FileReader(getRuntimeContext().getDistributedCache().getFile("file1")))) {
                String line;
                while ((line = reader.readLine()) != null) {
                    String[] parts = line.split(",");
                    itemAttributes.put(parts[0], new Tuple4<>(parts[0], parts[1], parts[2], parts[3]));
                }
            }
        }

        @Override
        public Tuple7<String,String,String,String,String,String,String> map(Tuple4<String,String,String,String> value) throws Exception {
            Tuple4<String, String, String, String> broadcastValue = itemAttributes.get(value.f1);
            if (broadcastValue != null) {
                return Tuple7.of(value.f0,value.f1,value.f2,value.f3,broadcastValue.f1,broadcastValue.f2,broadcastValue.f3);
            } else {
                return null;
            }
        }
    }
}

We verzenden het verpakte jar-bestand naar Flink:

Schermopname van het verpakken van het jar-bestand en verzenden naar Flink met Kafka 3.2.

Schermopname van het verpakken van het jar-bestand en verzenden naar Flink als verdere stap met Kafka 3.2.

Realtime-onderwerp user_events over Kafka produceren

We kunnen realtime gebruikersgedragsgebeurtenissen user_events produceren in Kafka.

Schermopname van een realtime gebeurtenis voor gebruikersgedrag in Kafka 3.2.

itemAttributes De samenvoeging gebruiken op user_events Kafka

We gebruiken itemAttributes nu activiteiten van user_eventsgebruikersactiviteiten van het bestandssysteem.

Schermopname van het gebruik van de activiteitsgebeurtenissen van gebruikerskenmerken in Kafka 3.2.

We blijven de gebruikersactiviteit en itemkenmerken produceren en gebruiken in de volgende afbeeldingen

Schermopname die laat zien hoe we een realtime gebeurtenis voor gebruikersgedrag blijven produceren in Kafka 3.2.

Schermopname die laat zien hoe we de activiteitengebeurtenissen van gebruikerskenmerken blijven gebruiken in Kafka.

Verwijzing