Delen via


ConversionsExtensionsCatalog.Hash Method

Definition

Overloads

Hash(TransformsCatalog+ConversionTransforms, HashingEstimator+ColumnOptions[])

Create a HashingEstimator, which hashes the input column's data type InputColumnName to a new column: Name.

Hash(TransformsCatalog+ConversionTransforms, String, String, Int32, Int32)

Create a HashingEstimator, which hashes the data from the column specified in inputColumnName to a new column: outputColumnName.

Hash(TransformsCatalog+ConversionTransforms, HashingEstimator+ColumnOptions[])

Create a HashingEstimator, which hashes the input column's data type InputColumnName to a new column: Name.

public static Microsoft.ML.Transforms.HashingEstimator Hash (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, params Microsoft.ML.Transforms.HashingEstimator.ColumnOptions[] columns);
static member Hash : Microsoft.ML.TransformsCatalog.ConversionTransforms * Microsoft.ML.Transforms.HashingEstimator.ColumnOptions[] -> Microsoft.ML.Transforms.HashingEstimator
<Extension()>
Public Function Hash (catalog As TransformsCatalog.ConversionTransforms, ParamArray columns As HashingEstimator.ColumnOptions()) As HashingEstimator

Parameters

catalog
TransformsCatalog.ConversionTransforms

The transform's catalog.

columns
HashingEstimator.ColumnOptions[]

Advanced options for the estimator that also contain the input and output column names. This estimator operates over text, numeric, boolean, key and DataViewRowId data types. The new column's data type will be a vector of UInt32, or a UInt32 based on whether the input column data types are vectors or scalars.

Returns

Examples

using System;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;

namespace Samples.Dynamic
{
    // This example demonstrates hashing of categorical string and integer data types by using Hash transform's 
    // advanced options API.
    public static class HashWithOptions
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Category = "MLB" , Age = 18 },
                new DataPoint() { Category = "NFL" , Age = 14 },
                new DataPoint() { Category = "NFL" , Age = 15 },
                new DataPoint() { Category = "MLB" , Age = 18 },
                new DataPoint() { Category = "MLS" , Age = 14 },
            };

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Construct the pipeline that would hash the two columns and store the
            // results in new columns. The first transform hashes the string column
            // and the second transform hashes the integer column.
            //
            // Hashing is not a reversible operation, so there is no way to retrieve
            // the original value from the hashed value. Sometimes, for debugging,
            // or model explainability, users will need to know what values in the
            // original columns generated the values in the hashed columns, since
            // the algorithms will mostly use the hashed values for further
            // computations. The Hash method will preserve the mapping from the
            // original values to the hashed values in the Annotations of the newly
            // created column (column populated with the hashed values). 
            //
            // Setting the maximumNumberOfInverts parameters to -1 will preserve the
            // full map. If that parameter is left to the default 0 value, the
            // mapping is not preserved.
            var pipeline = mlContext.Transforms.Conversion.Hash(
                    new[]
                    {
                            new HashingEstimator.ColumnOptions(
                                "CategoryHashed",
                                "Category",
                                16,
                                useOrderedHashing: false,
                                maximumNumberOfInverts: -1),

                            new HashingEstimator.ColumnOptions(
                                "AgeHashed",
                                "Age",
                                8,
                                useOrderedHashing: false)
                    });

            // Let's fit our pipeline, and then apply it to the same data.
            var transformer = pipeline.Fit(data);
            var transformedData = transformer.Transform(data);

            // Convert the post transformation from the IDataView format to an
            // IEnumerable <TransformedData> for easy consumption.
            var convertedData = mlContext.Data.CreateEnumerable<
                TransformedDataPoint>(transformedData, true);

            Console.WriteLine("Category CategoryHashed\t Age\t AgeHashed");
            foreach (var item in convertedData)
                Console.WriteLine($"{item.Category}\t {item.CategoryHashed}\t\t  " +
                    $"{item.Age}\t {item.AgeHashed}");

            // Expected data after the transformation.
            //
            // Category CategoryHashed   Age     AgeHashed
            // MLB      36206            18      127
            // NFL      19015            14      62
            // NFL      19015            15      43
            // MLB      36206            18      127
            // MLS      6013             14      62

            // For the Category column, where we set the maximumNumberOfInverts
            // parameter, the names of the original categories, and their
            // correspondence with the generated hash values is preserved in the
            // Annotations in the format of indices and values.the indices array
            // will have the hashed values, and the corresponding element,
            // position -wise, in the values array will contain the original value. 
            //
            // See below for an example on how to retrieve the mapping. 
            var slotNames = new VBuffer<ReadOnlyMemory<char>>();
            transformedData.Schema["CategoryHashed"].Annotations.GetValue(
                "KeyValues", ref slotNames);

            var indices = slotNames.GetIndices();
            var categoryNames = slotNames.GetValues();

            for (int i = 0; i < indices.Length; i++)
                Console.WriteLine($"The original value of the {indices[i]} " +
                    $"category is {categoryNames[i]}");

            // Output Data
            // 
            // The original value of the 6012 category is MLS
            // The original value of the 19014 category is NFL
            // The original value of the 36205 category is MLB
        }

        public class DataPoint
        {
            public string Category { get; set; }
            public uint Age { get; set; }
        }

        public class TransformedDataPoint : DataPoint
        {
            public uint CategoryHashed { get; set; }
            public uint AgeHashed { get; set; }
        }

    }
}

Remarks

This transform can operate over several columns.

Applies to

Hash(TransformsCatalog+ConversionTransforms, String, String, Int32, Int32)

Create a HashingEstimator, which hashes the data from the column specified in inputColumnName to a new column: outputColumnName.

public static Microsoft.ML.Transforms.HashingEstimator Hash (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, string inputColumnName = default, int numberOfBits = 31, int maximumNumberOfInverts = 0);
static member Hash : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * string * int * int -> Microsoft.ML.Transforms.HashingEstimator
<Extension()>
Public Function Hash (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional numberOfBits As Integer = 31, Optional maximumNumberOfInverts As Integer = 0) As HashingEstimator

Parameters

catalog
TransformsCatalog.ConversionTransforms

The conversion transform's catalog.

outputColumnName
String

Name of the column resulting from the transformation of inputColumnName. This column's data type will be a vector of keys, or a scalar of key based on whether the input column data types are vectors or scalars.

inputColumnName
String

Name of the column whose data will be hashed. If set to null, the value of the outputColumnName will be used as source. This estimator operates over vectors or scalars of text, numeric, boolean, key or DataViewRowId data types.

numberOfBits
Int32

Number of bits to hash into. Must be between 1 and 31, inclusive.

maximumNumberOfInverts
Int32

During hashing we construct mappings between original values and the produced hash values. Text representation of original values are stored in the slot names of the annotations for the new column.Hashing, as such, can map many initial values to one. maximumNumberOfInvertsSpecifies the upper bound of the number of distinct input values mapping to a hash that should be retained. 0 does not retain any input values. -1 retains all input values mapping to each hash.

Returns

Examples

using System;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    // This example demonstrates hashing of categorical string and integer data types.
    public static class Hash
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext(seed: 1);

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Category = "MLB" , Age = 18 },
                new DataPoint() { Category = "NFL" , Age = 14 },
                new DataPoint() { Category = "NFL" , Age = 15 },
                new DataPoint() { Category = "MLB" , Age = 18 },
                new DataPoint() { Category = "MLS" , Age = 14 },
            };

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Construct the pipeline that would hash the two columns and store the
            // results in new columns. The first transform hashes the string column
            // and the second transform hashes the integer column.
            //
            // Hashing is not a reversible operation, so there is no way to retrieve
            // the original value from the hashed value. Sometimes, for debugging,
            // or model explainability, users will need to know what values in the
            // original columns generated the values in the hashed columns, since
            // the algorithms will mostly use the hashed values for further
            // computations. The Hash method will preserve the mapping from the
            // original values to the hashed values in the Annotations of the newly
            // created column (column populated with the hashed values). 
            //
            // Setting the maximumNumberOfInverts parameters to -1 will preserve the
            // full map. If that parameter is left to the default 0 value, the
            // mapping is not preserved.
            var pipeline = mlContext.Transforms.Conversion.Hash("CategoryHashed",
                "Category", numberOfBits: 16, maximumNumberOfInverts: -1)
                .Append(mlContext.Transforms.Conversion.Hash("AgeHashed", "Age",
                numberOfBits: 8));

            // Let's fit our pipeline, and then apply it to the same data.
            var transformer = pipeline.Fit(data);
            var transformedData = transformer.Transform(data);

            // Convert the post transformation from the IDataView format to an
            // IEnumerable <TransformedData> for easy consumption.
            var convertedData = mlContext.Data.CreateEnumerable<
                TransformedDataPoint>(transformedData, true);

            Console.WriteLine("Category CategoryHashed\t Age\t AgeHashed");
            foreach (var item in convertedData)
                Console.WriteLine($"{item.Category}\t {item.CategoryHashed}\t\t  " +
                    $"{item.Age}\t {item.AgeHashed}");

            // Expected data after the transformation.
            //
            // Category CategoryHashed   Age     AgeHashed
            // MLB      36206            18      127
            // NFL      19015            14      62
            // NFL      19015            15      43
            // MLB      36206            18      127
            // MLS      6013             14      62

            // For the Category column, where we set the maximumNumberOfInverts
            // parameter, the names of the original categories, and their
            // correspondence with the generated hash values is preserved in the
            // Annotations in the format of indices and values.the indices array
            // will have the hashed values, and the corresponding element,
            // position -wise, in the values array will contain the original value. 
            //
            // See below for an example on how to retrieve the mapping. 
            var slotNames = new VBuffer<ReadOnlyMemory<char>>();
            transformedData.Schema["CategoryHashed"].Annotations.GetValue(
                "KeyValues", ref slotNames);

            var indices = slotNames.GetIndices();
            var categoryNames = slotNames.GetValues();

            for (int i = 0; i < indices.Length; i++)
                Console.WriteLine($"The original value of the {indices[i]} " +
                    $"category is {categoryNames[i]}");

            // Output Data
            // 
            // The original value of the 6012 category is MLS
            // The original value of the 19014 category is NFL
            // The original value of the 36205 category is MLB
        }

        public class DataPoint
        {
            public string Category { get; set; }
            public uint Age { get; set; }
        }

        public class TransformedDataPoint : DataPoint
        {
            public uint CategoryHashed { get; set; }
            public uint AgeHashed { get; set; }
        }

    }
}

Applies to