NormalizationCatalog.NormalizeRobustScaling Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Overloads
NormalizeRobustScaling(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, UInt32, UInt32) |
Create a NormalizingEstimator, which normalizes using statistics that are robust to outliers by centering the data around 0 (removing the median) and scales the data according to the quantile range (defaults to the interquartile range). |
NormalizeRobustScaling(TransformsCatalog, String, String, Int64, Boolean, UInt32, UInt32) |
Create a NormalizingEstimator, which normalizes using statistics that are robust to outliers by centering the data around 0 (removing the median) and scales the data according to the quantile range (defaults to the interquartile range). |
NormalizeRobustScaling(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, UInt32, UInt32)
Create a NormalizingEstimator, which normalizes using statistics that are robust to outliers by centering the data around 0 (removing the median) and scales the data according to the quantile range (defaults to the interquartile range).
public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);
static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator
Parameters
- catalog
- TransformsCatalog
The transform catalog
- columns
- InputOutputColumnPair[]
The pairs of input and output columns. The input columns must be of data type Single, Double or a known-sized vector of those types. The data type for the output column will be the same as the associated input column.
- maximumExampleCount
- Int64
Maximum number of examples used to train the normalizer.
- centerData
- Boolean
Whether to center the data around 0 be removing the median. Defaults to true.
- quantileMin
- UInt32
Quantile min used to scale the data. Defaults to 25.
- quantileMax
- UInt32
Quantile max used to scale the data. Defaults to 75.
Returns
Examples
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class NormalizeBinningMulticolumn
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
Features2 = 1 },
new DataPoint(){ Features = new float[4] { 6, 2, 2, 0},
Features2 = 4 },
new DataPoint(){ Features = new float[4] { 4, 0, 1, 0},
Features2 = 1 },
new DataPoint(){ Features = new float[4] { 2,-1,-1, 1},
Features2 = 2 }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// NormalizeBinning normalizes the data by constructing equidensity bins
// and produce output based on to which bin the original value belongs.
var normalize = mlContext.Transforms.NormalizeBinning(new[]{
new InputOutputColumnPair("Features"),
new InputOutputColumnPair("Features2"),
},
maximumBinCount: 4, fixZero: false);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var normalizeTransform = normalize.Fit(data);
var transformedData = normalizeTransform.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
var column2 = transformedData.GetColumn<float>("Features2").ToArray();
for (int i = 0; i < column.Length; i++)
Console.WriteLine(string.Join(", ", column[i].Select(x => x
.ToString("f4"))) + "\t\t" + column2[i]);
// Expected output:
//
// Features Feature2
// 1.0000, 0.6667, 1.0000, 0.0000 0
// 0.6667, 1.0000, 0.6667, 0.0000 1
// 0.3333, 0.3333, 0.3333, 0.0000 0
// 0.0000, 0.0000, 0.0000, 1.0000 0.5
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
public float Features2 { get; set; }
}
}
}
Applies to
NormalizeRobustScaling(TransformsCatalog, String, String, Int64, Boolean, UInt32, UInt32)
Create a NormalizingEstimator, which normalizes using statistics that are robust to outliers by centering the data around 0 (removing the median) and scales the data according to the quantile range (defaults to the interquartile range).
public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);
static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator
Parameters
- catalog
- TransformsCatalog
The transform catalog
- outputColumnName
- String
Name of the column resulting from the transformation of inputColumnName
.
The data type on this column is the same as the input column.
- inputColumnName
- String
Name of the column to transform. If set to null
, the value of the outputColumnName
will be used as source.
The data type on this column should be Single, Double or a known-sized vector of those types.
- maximumExampleCount
- Int64
Maximum number of examples used to train the normalizer.
- centerData
- Boolean
Whether to center the data around 0 by removing the median. Defaults to true.
- quantileMin
- UInt32
Quantile min used to scale the data. Defaults to 25.
- quantileMax
- UInt32
Quantile max used to scale the data. Defaults to 75.
Returns
Examples
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class NormalizeSupervisedBinning
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
Bin ="Bin1" },
new DataPoint(){ Features = new float[4] { 6, 2, 2, 1},
Bin ="Bin2" },
new DataPoint(){ Features = new float[4] { 5, 3, 0, 2},
Bin ="Bin2" },
new DataPoint(){ Features = new float[4] { 4,-8, 1, 3},
Bin ="Bin3" },
new DataPoint(){ Features = new float[4] { 2,-5,-1, 4},
Bin ="Bin3" }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// Let's transform "Bin" column from string to key.
data = mlContext.Transforms.Conversion.MapValueToKey("Bin").Fit(data)
.Transform(data);
// NormalizeSupervisedBinning normalizes the data by constructing bins
// based on correlation with the label column and produce output based
// on to which bin original value belong.
var normalize = mlContext.Transforms.NormalizeSupervisedBinning(
"Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
fixZero: false);
// NormalizeSupervisedBinning normalizes the data by constructing bins
// based on correlation with the label column and produce output based
// on to which bin original value belong but make sure zero values would
// remain zero after normalization. Helps preserve sparsity.
var normalizeFixZero = mlContext.Transforms.NormalizeSupervisedBinning(
"Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
fixZero: true);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var normalizeTransform = normalize.Fit(data);
var transformedData = normalizeTransform.Transform(data);
var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
var fixZeroData = normalizeFixZeroTransform.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 1.0000, 0.5000, 1.0000, 0.0000
// 0.5000, 1.0000, 0.0000, 0.5000
// 0.5000, 1.0000, 0.0000, 0.5000
// 0.0000, 0.0000, 0.0000, 1.0000
// 0.0000, 0.0000, 0.0000, 1.0000
var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
.ToArray();
foreach (var row in columnFixZero)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 1.0000, 0.0000, 1.0000, 0.0000
// 0.5000, 0.5000, 0.0000, 0.5000
// 0.5000, 0.5000, 0.0000, 0.5000
// 0.0000,-0.5000, 0.0000, 1.0000
// 0.0000,-0.5000, 0.0000, 1.0000
// Let's get transformation parameters. Since we work with only one
// column we need to pass 0 as parameter for
// GetNormalizerModelParameters.
// If we have multiple columns transformations we need to pass index of
// InputOutputColumnPair.
var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
as BinNormalizerModelParameters<ImmutableArray<float>>;
Console.WriteLine($"The 1-index value in resulting array would be " +
$"produce by:");
Console.WriteLine("y = (Index(x) / " + transformParams.Density[0] +
") - " + (transformParams.Offset.Length == 0 ? 0 : transformParams
.Offset[0]));
Console.WriteLine("Where Index(x) is the index of the bin to which " +
"x belongs");
Console.WriteLine("Bins upper borders are: " + string.Join(" ",
transformParams.UpperBounds[0]));
// Expected output:
// The 1-index value in resulting array would be produce by:
// y = (Index(x) / 2) - 0
// Where Index(x) is the index of the bin to which x belongs
// Bins upper bounds are: 4.5 7 ∞
var fixZeroParams = normalizeFixZeroTransform
.GetNormalizerModelParameters(0) as BinNormalizerModelParameters<
ImmutableArray<float>>;
Console.WriteLine($"The 1-index value in resulting array would be " +
$"produce by:");
Console.WriteLine(" y = (Index(x) / " + fixZeroParams.Density[1] +
") - " + (fixZeroParams.Offset.Length == 0 ? 0 : fixZeroParams
.Offset[1]));
Console.WriteLine("Where Index(x) is the index of the bin to which x " +
"belongs");
Console.WriteLine("Bins upper borders are: " + string.Join(" ",
fixZeroParams.UpperBounds[1]));
// Expected output:
// The 1-index value in resulting array would be produce by:
// y = (Index(x) / 2) - 0.5
// Where Index(x) is the index of the bin to which x belongs
// Bins upper bounds are: -2 1.5 ∞
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
public string Bin { get; set; }
}
}
}