AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, AveragedPerceptronTrainer+Options)
|
Create an AveragedPerceptronTrainer with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.
|
AveragedPerceptron(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, IClassificationLoss, Single, Boolean, Single, Int32)
|
Create an AveragedPerceptronTrainer, which predicts a target using a linear binary classification model trained over boolean label data.
|
LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, LbfgsLogisticRegressionBinaryTrainer+Options)
|
Create LbfgsLogisticRegressionBinaryTrainer with advanced options, which predicts a target using a linear binary classification model trained over boolean label data.
|
LbfgsLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
|
Create LbfgsLogisticRegressionBinaryTrainer, which predicts a target using a linear binary classification model trained over boolean label data.
|
LbfgsMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers, LbfgsMaximumEntropyMulticlassTrainer+Options)
|
Create LbfgsMaximumEntropyMulticlassTrainer with advanced options, which predicts a target using a maximum entropy classification model trained with the L-BFGS method.
|
LbfgsMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
|
Create LbfgsMaximumEntropyMulticlassTrainer, which predicts a target using a maximum entropy classification model trained with the L-BFGS method.
|
LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, LbfgsPoissonRegressionTrainer+Options)
|
Create LbfgsPoissonRegressionTrainer using advanced options, which predicts a target using a linear regression model.
|
LbfgsPoissonRegression(RegressionCatalog+RegressionTrainers, String, String, String, Single, Single, Single, Int32, Boolean)
|
Create LbfgsPoissonRegressionTrainer, which predicts a target using a linear regression model.
|
LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LdSvmTrainer+Options)
|
Create LdSvmTrainer with advanced options, which predicts a target using a Local Deep SVM model.
|
LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Boolean, Boolean)
|
Create LdSvmTrainer, which predicts a target using a Local Deep SVM model.
|
LinearSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LinearSvmTrainer+Options)
|
Create LinearSvmTrainer with advanced options, which predicts a target using a linear binary classification model
trained over boolean label data.
|
LinearSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32)
|
Create LinearSvmTrainer, which predicts a target using a linear binary classification model trained
over boolean label data.
|
NaiveBayes(MulticlassClassificationCatalog+MulticlassClassificationTrainers, String, String)
|
Create a NaiveBayesMulticlassTrainer, which predicts a multiclass target using a Naive Bayes model
that supports binary feature values.
|
OneVersusAll<TModel>(MulticlassClassificationCatalog+MulticlassClassificationTrainers,
ITrainerEstimator<BinaryPredictionTransformer<TModel>,TModel>,
String, Boolean, IEstimator<ISingleFeaturePredictionTransformer<ICalibrator>>,
Int32, Boolean)
|
Create a OneVersusAllTrainer, which predicts a multiclass target using one-versus-all strategy with
the binary classification estimator specified by binaryEstimator .
|
OnlineGradientDescent(RegressionCatalog+RegressionTrainers, OnlineGradientDescentTrainer+Options)
|
Create OnlineGradientDescentTrainer using advanced options, which predicts a target using a linear regression model.
|
OnlineGradientDescent(RegressionCatalog+RegressionTrainers, String, String, IRegressionLoss, Single, Boolean, Single, Int32)
|
Create OnlineGradientDescentTrainer, which predicts a target using a linear regression model.
|
PairwiseCoupling<TModel>(MulticlassClassificationCatalog+MulticlassClassificationTrainers,
ITrainerEstimator<ISingleFeaturePredictionTransformer<TModel>,
TModel>, String, Boolean, IEstimator<ISingleFeaturePredictionTransformer<ICalibrator>>,
Int32)
|
Create a PairwiseCouplingTrainer, which predicts a multiclass target using pairwise coupling strategy with
the binary classification estimator specified by binaryEstimator .
|
Prior(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String)
|
Create PriorTrainer, which predicts a target using a binary classification model.
|
Sdca(RegressionCatalog+RegressionTrainers, SdcaRegressionTrainer+Options)
|
Create SdcaRegressionTrainer with advanced options, which predicts a target using a linear regression model.
|
Sdca(RegressionCatalog+RegressionTrainers, String, String, String, ISupportSdcaRegressionLoss, Nullable<Single>, Nullable<Single>, Nullable<Int32>)
|
Create SdcaRegressionTrainer, which predicts a target using a linear regression model.
|
SdcaLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers, SdcaLogisticRegressionBinaryTrainer+Options)
|
Create SdcaLogisticRegressionBinaryTrainer with advanced options, which predicts a target using a linear classification model.
|
SdcaLogisticRegression(BinaryClassificationCatalog+BinaryClassificationTrainers,
String, String, String, Nullable<Single>, Nullable<Single>, Nullable<Int32>)
|
Create SdcaLogisticRegressionBinaryTrainer, which predicts a target using a linear classification model.
|
SdcaMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers, SdcaMaximumEntropyMulticlassTrainer+Options)
|
Create SdcaMaximumEntropyMulticlassTrainer with advanced options, which predicts a target using a maximum entropy classification model trained with a coordinate descent method.
|
SdcaMaximumEntropy(MulticlassClassificationCatalog+MulticlassClassificationTrainers,
String, String, String, Nullable<Single>, Nullable<Single>, Nullable<Int32>)
|
Create SdcaMaximumEntropyMulticlassTrainer, which predicts a target using a maximum entropy classification model trained with a coordinate descent method.
|
SdcaNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SdcaNonCalibratedBinaryTrainer+Options)
|
Create SdcaNonCalibratedBinaryTrainer with advanced options, which predicts a target using a linear classification model trained over boolean label data.
|
SdcaNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers,
String, String, String, ISupportSdcaClassificationLoss, Nullable<Single>,
Nullable<Single>, Nullable<Int32>)
|
Create SdcaNonCalibratedBinaryTrainer, which predicts a target using a linear classification model.
|
SdcaNonCalibrated(MulticlassClassificationCatalog+MulticlassClassificationTrainers, SdcaNonCalibratedMulticlassTrainer+Options)
|
Create SdcaNonCalibratedMulticlassTrainer with advanced options, which predicts a target using a linear multiclass classification model trained with a coordinate descent method.
|
SdcaNonCalibrated(MulticlassClassificationCatalog+MulticlassClassificationTrainers,
String, String, String, ISupportSdcaClassificationLoss, Nullable<Single>,
Nullable<Single>, Nullable<Int32>)
|
Create SdcaNonCalibratedMulticlassTrainer, which predicts a target using a linear multiclass classification model trained with a coordinate descent method.
|
SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdCalibratedTrainer+Options)
|
Create SgdCalibratedTrainer with advanced options, which predicts a target using a linear classification model.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
|
SgdCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Double, Single)
|
Create SgdCalibratedTrainer, which predicts a target using a linear classification model.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
|
SgdNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, SgdNonCalibratedTrainer+Options)
|
Create SgdNonCalibratedTrainer with advanced options, which predicts a target using a linear classification model.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
|
SgdNonCalibrated(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, IClassificationLoss, Int32, Double, Single)
|
Create SgdNonCalibratedTrainer, which predicts a target using a linear classification model.
Stochastic gradient descent (SGD) is an iterative algorithm that optimizes a differentiable objective function.
|