Delen via


TreeExtensions Class

Definition

Collection of extension methods used by RegressionCatalog, BinaryClassificationCatalog, MulticlassClassificationCatalog, RankingCatalog, and TransformsCatalog to create instances of decision tree trainers and featurizers.

public static class TreeExtensions
type TreeExtensions = class
Public Module TreeExtensions
Inheritance
TreeExtensions

Methods

FastForest(BinaryClassificationCatalog+BinaryClassificationTrainers, FastForestBinaryTrainer+Options)

Create FastForestBinaryTrainer with advanced options, which predicts a target using a decision tree regression model.

FastForest(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Int32)

Create FastForestBinaryTrainer, which predicts a target using a decision tree regression model.

FastForest(RegressionCatalog+RegressionTrainers, FastForestRegressionTrainer+Options)

Create FastForestRegressionTrainer with advanced options, which predicts a target using a decision tree regression model.

FastForest(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32)

Create FastForestRegressionTrainer, which predicts a target using a decision tree regression model.

FastTree(BinaryClassificationCatalog+BinaryClassificationTrainers, FastTreeBinaryTrainer+Options)

Create FastTreeBinaryTrainer with advanced options, which predicts a target using a decision tree binary classification model.

FastTree(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Int32, Double)

Create FastTreeBinaryTrainer, which predicts a target using a decision tree binary classification model.

FastTree(RankingCatalog+RankingTrainers, FastTreeRankingTrainer+Options)

Create a FastTreeRankingTrainer with advanced options, which ranks a series of inputs based on their relevance, using a decision tree ranking model.

FastTree(RankingCatalog+RankingTrainers, String, String, String, String, Int32, Int32, Int32, Double)

Create a FastTreeRankingTrainer, which ranks a series of inputs based on their relevancee, using a decision tree ranking model.

FastTree(RegressionCatalog+RegressionTrainers, FastTreeRegressionTrainer+Options)

Create FastTreeRegressionTrainer with advanced options, which predicts a target using a decision tree regression model.

FastTree(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32, Double)

Create FastTreeRegressionTrainer, which predicts a target using a decision tree regression model.

FastTreeTweedie(RegressionCatalog+RegressionTrainers, FastTreeTweedieTrainer+Options)

Create FastTreeTweedieTrainer using advanced options, which predicts a target using a decision tree regression model.

FastTreeTweedie(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Int32, Double)

Create FastTreeTweedieTrainer, which predicts a target using a decision tree regression model.

FeaturizeByFastForestBinary(TransformsCatalog, FastForestBinaryFeaturizationEstimator+Options)

Create FastForestBinaryFeaturizationEstimator, which uses FastForestBinaryTrainer to train TreeEnsembleModelParameters to create tree-based features.

FeaturizeByFastForestRegression(TransformsCatalog, FastForestRegressionFeaturizationEstimator+Options)

Create FastForestRegressionFeaturizationEstimator, which uses FastForestRegressionTrainer to train TreeEnsembleModelParameters to create tree-based features.

FeaturizeByFastTreeBinary(TransformsCatalog, FastTreeBinaryFeaturizationEstimator+Options)

Create FastTreeBinaryFeaturizationEstimator, which uses FastTreeBinaryTrainer to train TreeEnsembleModelParameters to create tree-based features.

FeaturizeByFastTreeRanking(TransformsCatalog, FastTreeRankingFeaturizationEstimator+Options)

Create FastTreeRankingFeaturizationEstimator, which uses FastTreeRankingTrainer to train TreeEnsembleModelParameters to create tree-based features.

FeaturizeByFastTreeRegression(TransformsCatalog, FastTreeRegressionFeaturizationEstimator+Options)

Create FastTreeRegressionFeaturizationEstimator, which uses FastTreeRegressionTrainer to train TreeEnsembleModelParameters to create tree-based features.

FeaturizeByFastTreeTweedie(TransformsCatalog, FastTreeTweedieFeaturizationEstimator+Options)

Create FastTreeTweedieFeaturizationEstimator, which uses FastTreeTweedieTrainer to train TreeEnsembleModelParameters to create tree-based features.

FeaturizeByPretrainTreeEnsemble(TransformsCatalog, PretrainedTreeFeaturizationEstimator+Options)

Create PretrainedTreeFeaturizationEstimator, which produces tree-based features given a TreeEnsembleModelParameters.

Gam(BinaryClassificationCatalog+BinaryClassificationTrainers, GamBinaryTrainer+Options)

Create GamBinaryTrainer using advanced options, which predicts a target using generalized additive models (GAM).

Gam(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Double)

Create GamBinaryTrainer, which predicts a target using generalized additive models (GAM).

Gam(RegressionCatalog+RegressionTrainers, GamRegressionTrainer+Options)

Create GamRegressionTrainer using advanced options, which predicts a target using generalized additive models (GAM).

Gam(RegressionCatalog+RegressionTrainers, String, String, String, Int32, Int32, Double)

Create GamRegressionTrainer, which predicts a target using generalized additive models (GAM).

Applies to