Delen via


Procedure: Begrenzings- en blokkeringsfunctionaliteit toevoegen aan een verzameling

In dit voorbeeld ziet u hoe u begrenzings- en blokkeringsfunctionaliteit toevoegt aan een aangepaste verzamelingsklasse door de System.Collections.Concurrent.IProducerConsumerCollection<T> interface in de klasse te implementeren en vervolgens een klasse-exemplaar te gebruiken als het interne opslagmechanisme voor een System.Collections.Concurrent.BlockingCollection<T>. Zie Het overzicht van BlockingCollection voor meer informatie over begrenzing en blokkering.

Opmerking

De aangepaste verzamelingsklasse is een wachtrij met basisprioriteit waarin de prioriteitsniveaus worden weergegeven als een matrix met System.Collections.Concurrent.ConcurrentQueue<T> objecten. Er wordt geen extra volgorde uitgevoerd binnen elke wachtrij.

In de clientcode worden drie taken gestart. De eerste taak peilt alleen naar toetsenbordstreken om op elk moment tijdens de uitvoering annulering in te schakelen. De tweede taak is de producerthread; het voegt nieuwe items toe aan de blokkerende verzameling en geeft elk item een prioriteit op basis van een willekeurige waarde. Met de derde taak worden items uit de verzameling verwijderd zodra ze beschikbaar komen.

U kunt het gedrag van de toepassing aanpassen door een van de threads sneller uit te voeren dan de andere. Als de producent sneller wordt uitgevoerd, ziet u de begrenzingsfunctionaliteit omdat de blokkerende verzameling voorkomt dat items worden toegevoegd als deze al het aantal items bevat dat is opgegeven in de constructor. Als de consument sneller wordt uitgevoerd, ziet u dat de blokkeringsfunctionaliteit wordt geblokkeerd wanneer de consument wacht tot er een nieuw item is toegevoegd.

namespace ProdConsumerCS
{
    using System;
    using System.Collections;
    using System.Collections.Concurrent;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.Linq;
    using System.Text;
    using System.Threading;
    using System.Threading.Tasks;

    // Implementation of a priority queue that has bounding and blocking functionality.
    public class SimplePriorityQueue<TPriority, TValue> : IProducerConsumerCollection<KeyValuePair<int, TValue>>
    {
        // Each internal queue in the array represents a priority level.
        // All elements in a given array share the same priority.
        private ConcurrentQueue<KeyValuePair<int, TValue>>[] _queues = null;

        // The number of queues we store internally.
        private int priorityCount = 0;
        private int m_count = 0;

        public SimplePriorityQueue(int priCount)
        {
            this.priorityCount = priCount;
            _queues = new ConcurrentQueue<KeyValuePair<int, TValue>>[priorityCount];
            for (int i = 0; i < priorityCount; i++)
                _queues[i] = new ConcurrentQueue<KeyValuePair<int, TValue>>();
        }

        // IProducerConsumerCollection members
        public bool TryAdd(KeyValuePair<int, TValue> item)
        {
            _queues[item.Key].Enqueue(item);
            Interlocked.Increment(ref m_count);
            return true;
        }

        public bool TryTake(out KeyValuePair<int, TValue> item)
        {
            bool success = false;

            // Loop through the queues in priority order
            // looking for an item to dequeue.
            for (int i = 0; i < priorityCount; i++)
            {
                // Lock the internal data so that the Dequeue
                // operation and the updating of m_count are atomic.
                lock (_queues)
                {
                    success = _queues[i].TryDequeue(out item);
                    if (success)
                    {
                        Interlocked.Decrement(ref m_count);
                        return true;
                    }
                }
            }

            // If we get here, we found nothing.
            // Assign the out parameter to its default value and return false.
            item = new KeyValuePair<int, TValue>(0, default(TValue));
            return false;
        }

        public int Count
        {
            get { return m_count; }
        }

        // Required for ICollection
        void ICollection.CopyTo(Array array, int index)
        {
            CopyTo(array as KeyValuePair<int, TValue>[], index);
        }

        // CopyTo is problematic in a producer-consumer.
        // The destination array might be shorter or longer than what
        // we get from ToArray due to adds or takes after the destination array was allocated.
        // Therefore, all we try to do here is fill up destination with as much
        // data as we have without running off the end.
        public void CopyTo(KeyValuePair<int, TValue>[] destination, int destStartingIndex)
        {
            if (destination == null) throw new ArgumentNullException();
            if (destStartingIndex < 0) throw new ArgumentOutOfRangeException();

            int remaining = destination.Length;
            KeyValuePair<int, TValue>[] temp = this.ToArray();
            for (int i = 0; i < destination.Length && i < temp.Length; i++)
                destination[i] = temp[i];
        }

        public KeyValuePair<int, TValue>[] ToArray()
        {
            KeyValuePair<int, TValue>[] result;

            lock (_queues)
            {
                result = new KeyValuePair<int, TValue>[this.Count];
                int index = 0;
                foreach (var q in _queues)
                {
                    if (q.Count > 0)
                    {
                        q.CopyTo(result, index);
                        index += q.Count;
                    }
                }
                return result;
            }
        }

        IEnumerator IEnumerable.GetEnumerator()
        {
            return GetEnumerator();
        }

        public IEnumerator<KeyValuePair<int, TValue>> GetEnumerator()
        {
            for (int i = 0; i < priorityCount; i++)
            {
                foreach (var item in _queues[i])
                    yield return item;
            }
        }

        public bool IsSynchronized
        {
            get
            {
                throw new NotSupportedException();
            }
        }

        public object SyncRoot
        {
            get { throw new NotSupportedException(); }
        }
    }

    public class TestBlockingCollection
    {
        static void Main()
        {

            int priorityCount = 7;
            SimplePriorityQueue<int, int> queue = new SimplePriorityQueue<int, int>(priorityCount);
            var bc = new BlockingCollection<KeyValuePair<int, int>>(queue, 50);

            CancellationTokenSource cts = new CancellationTokenSource();

            Task.Run(() =>
                {
                    if (Console.ReadKey(true).KeyChar == 'c')
                        cts.Cancel();
                });

            // Create a Task array so that we can Wait on it
            // and catch any exceptions, including user cancellation.
            Task[] tasks = new Task[2];

            // Create a producer thread. You can change the code to
            // make the wait time a bit slower than the consumer
            // thread to demonstrate the blocking capability.
            tasks[0] = Task.Run(() =>
            {
                // We randomize the wait time, and use that value
                // to determine the priority level (Key) of the item.
                Random r = new Random();

                int itemsToAdd = 40;
                int count = 0;
                while (!cts.Token.IsCancellationRequested && itemsToAdd-- > 0)
                {
                    int waitTime = r.Next(2000);
                    int priority = waitTime % priorityCount;
                    var item = new KeyValuePair<int, int>(priority, count++);

                    bc.Add(item);
                    Console.WriteLine("added pri {0}, data={1}", item.Key, item.Value);
                }
                Console.WriteLine("Producer is done adding.");
                bc.CompleteAdding();
            },
             cts.Token);

            //Give the producer a chance to add some items.
            Thread.SpinWait(1000000);

            // Create a consumer thread. The wait time is
            // a bit slower than the producer thread to demonstrate
            // the bounding capability at the high end. Change this value to see
            // the consumer run faster to demonstrate the blocking functionality
            // at the low end.

            tasks[1] = Task.Run(() =>
                {
                    while (!bc.IsCompleted && !cts.Token.IsCancellationRequested)
                    {
                        Random r = new Random();
                        int waitTime = r.Next(2000);
                        Thread.SpinWait(waitTime * 70);

                        // KeyValuePair is a value type. Initialize to avoid compile error in if(success)
                        KeyValuePair<int, int> item = new KeyValuePair<int, int>();
                        bool success = false;
                        success = bc.TryTake(out item);
                        if (success)
                        {
                            // Do something useful with the data.
                            Console.WriteLine("removed Pri = {0} data = {1} collCount= {2}", item.Key, item.Value, bc.Count);
                        }
                        else
                        {
                            Console.WriteLine("No items to retrieve. count = {0}", bc.Count);
                        }
                    }
                    Console.WriteLine("Exited consumer loop");
                },
                cts.Token);

            try {
                Task.WaitAll(tasks, cts.Token);
            }
            catch (OperationCanceledException e) {
                if (e.CancellationToken == cts.Token)
                    Console.WriteLine("Operation was canceled by user. Press any key to exit");
            }
            catch (AggregateException ae) {
                foreach (var v in ae.InnerExceptions)
                    Console.WriteLine(v.Message);
            }
            finally {
                cts.Dispose();
            }

            Console.ReadKey(true);
        }
    }
}

Standaard is de opslag voor een System.Collections.Concurrent.BlockingCollection<T> .System.Collections.Concurrent.ConcurrentQueue<T>

Zie ook