Delen via


Naslaginformatie over de volledige functie van BrainScript

Deze sectie bevat informatie over ingebouwde functies van BrainScript.

De declaraties van alle ingebouwde functies vindt u in de CNTK.core.bs naast het binaire CNTK-bestand.

De primitieve bewerkingen en lagen worden gedeclareerd in de globale naamruimte. Aanvullende bewerkingen worden gedeclareerd in naamruimten en worden gegeven met het respectieve voorvoegsel (bijvoorbeeld BS.RNN.LSTMP).

Lagen

Laaggebouw

Activeringsfuncties

Elementengewijze bewerkingen, unaire

Elementengewijze bewerkingen, binair

Elementengewijze bewerkingen, ternary

Matrixproduct- en samenvoegbewerkingen

  • Times(A, B, outputRank=1)
    A * B
  • TransposeTimes(A, B, outputRank=1)
  • Convolution(weights, x, kernelShape, mapDims=(0), stride=(1), sharing=(true), autoPadding=(true), lowerPadding=(0), upperPadding=(0), imageLayout='CHW', maxTempMemSizeInSamples=0)
  • Pooling(x, poolKind/*'max'|'average'*/, kernelShape, stride=(1), autoPadding=(true), lowerPadding=(0), upperPadding=(0), imageLayout='CHW')
  • ROIPooling(x, rois, roiOutputShape, spatialScale=1.0/16.0)

Leerbare parameters en constanten

  • ParameterTensor {shape, learningRateMultiplier=1.0, init='uniform'/*|gaussian*/, initValueScale=1.0, initValue=0.0, randomSeed=-1, initFromFilePath=''}
  • Constant {scalarValue, rows = 1, cols = 1}
  • BS.Constants.Zero, BS.Constants.One
    BS.Constants.True, BS.Constants.False, BS.Constants.None
  • BS.Constants.OnesTensor (shape)
  • BS.Constants.ZeroSequenceLike (x)

Ingangen

  • Input (shape, dynamicAxis='', sparse=false, tag='feature')
  • DynamicAxis{}
  • EnvironmentInput (propertyName)
    Mean (x), InvStdDev (x)

Verliesfuncties en metrische gegevens

Kortingen

Trainingsbewerkingen

  • BatchNormalization (input, scale, bias, runMean, runInvStdDev, spatial, normalizationTimeConstant = 0, blendTimeConstant = 0, epsilon = 0.00001, useCntkEngine = true, imageLayout='CHW')
  • Dropout (x)
  • Stabilize (x, enabled=true)
    StabilizeElements (x, inputDim=x.dim, enabled=true)
  • CosDistanceWithNegativeSamples (x, y, numShifts, numNegSamples)

Bewerkingen opnieuw vormgeven

  • CNTK2.Reshape (x, shape, beginAxis=0, endAxis=0)
    ReshapeDimension (x, axis, shape) = CNTK2.Reshape (x, shape, beginAxis=axis, endAxis=axis + 1)
    FlattenDimensions (x, axis, num) = CNTK2.Reshape (x, 0, beginAxis=axis, endAxis=axis + num)
    SplitDimension (x, axis, N) = ReshapeDimension (x, axis, 0:N)
  • Slice (beginIndex, endIndex, input, axis=1)
    BS.Sequences.First (x) = Slice (0, 1, x, axis=-1)
    BS.Sequences.Last (x) = Slice (-1, 0, x, axis=-1)
  • Splice (inputs, axis=1)
  • TransposeDimensions (x, axis1, axis2)
    Transpose (x) = TransposeDimensions (x, 1, 2)
  • BS.Sequences.BroadcastSequenceAs (type, data1)
  • BS.Sequences.Gather (where, x)
    BS.Sequences.Scatter (where, y)
    BS.Sequences.IsFirst (x)
    BS.Sequences.IsLast (x)

Terugkeerpatroon

  • OptimizedRNNStack(weights, input, hiddenDims, numLayers=1, bidirectional=false, recurrentOp='lstm')
  • BS.Loop.Previous (x, timeStep=1, defaultHiddenActivation=0)
    PastValue (shape, x, defaultHiddenActivation=0.1, ...) = BS.Loop.Previous (0, shape, ...)
  • BS.Loop.Next (x, timeStep=1, defaultHiddenActivation=0)
    FutureValue (shape, x, defaultHiddenActivation=0.1, ...) = BS.Loop.Next (0, shape, ...)
  • LSTMP (outputDim, cellDim=outputDim, x, inputDim=x.shape, aux=BS.Constants.None, auxDim=aux.shape, prevState, enableSelfStabilization=false)
  • BS.Boolean.Toggle (clk, initialValue=BS.Constants.False)
  • BS.RNNs.RecurrentLSTMP (outputDim, cellDim=outputDim, x, inputDim=x.shape, previousHook=BS.RNNs.PreviousHC, augmentInputHook=NoAuxInputHook, augmentInputDim=0, layerIndex=0, enableSelfStabilization=false)
  • BS.RNNs.RecurrentLSTMPStack (layerShapes, cellDims=layerShapes, input, inputShape=input.shape, previousHook=PreviousHC, augmentInputHook=NoAuxInputHook, augmentInputShape=0, enableSelfStabilization=false)
  • BS.RNNs.RecurrentBirectionalLSTMPStack (layerShapes, cellDims=layerShapes, input, inputShape=input.dim, previousHook=PreviousHC, nextHook=NextHC, enableSelfStabilization=false)

Ondersteuning voor reeks-naar-reeks

  • BS.Seq2Seq.CreateAugmentWithFixedWindowAttentionHook (attentionDim, attentionSpan, decoderDynamicAxis, encoderOutput, enableSelfStabilization=false)
  • BS.Seq2Seq.GreedySequenceDecoderFrom (modelAsTrained)
  • BS.Seq2Seq.BeamSearchSequenceDecoderFrom (modelAsTrained, beamDepth)

Bewerkingen voor speciaal gebruik

  • ClassBasedCrossEntropyWithSoftmax (labelClassDescriptorVectorSequence, mainInputInfo, mainWeight, classLogProbsBeforeSoftmax)

Modelbewerking

Ander

  • Fail (what)
  • IsSameObject (a, b)
  • Trace (node, say='', logFrequency=traceFrequency, logFirst=10, logGradientToo=false, onlyUpToRow=100000000, onlyUpToT=100000000, format=[])

Verouderd

  • ErrorPrediction (labels, nonNormalizedLogClassPosteriors)
  • ColumnElementTimes (...) = ElementTimes (...)
  • DiagTimes (...) = ElementTimes (...)
  • LearnableParameter(...) = Parameter(...)
  • LookupTable (embeddingMatrix, inputTensor)
  • RowRepeat (input, numRepeats)
  • RowSlice (beginIndex, numRows, input) = Slice(beginIndex, beginIndex + numRows, input, axis = 1)
  • RowStack (inputs)
  • RowElementTimes (...) = ElementTimes (...)
  • Scale (...) = ElementTimes (...)
  • ConstantTensor (scalarVal, shape)
    Parameter (outputDim, inputDim, ...) = ParameterTensor ((outputDim:input), ...)
    WeightParam (outputDim, inputDim) = Parameter (outputDim, inputDim, init='uniform', initValueScale=1, initOnCPUOnly=true, randomSeed=1)
    DiagWeightParam (outputDim) = ParameterTensor ((outputDim), init='uniform', initValueScale=1, initOnCPUOnly=true, randomSeed=1)
    BiasParam (dim) = ParameterTensor ((dim), init='fixedValue', value=0.0)
    ScalarParam() = BiasParam (1)
  • SparseInput (shape, dynamicAxis='', tag='feature')
    ImageInput (imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='', tag='feature')
    SparseImageInput (imageWidth, imageHeight, imageChannels, imageLayout='CHW', dynamicAxis='', tag='feature')
  • MeanVarNorm(feat) = PerDimMeanVarNormalization(feat, Mean (feat), InvStdDev (feat))
    PerDimMeanVarNormalization (x, mean, invStdDev),
    PerDimMeanVarDeNormalization (x, mean, invStdDev)
  • ReconcileDynamicAxis (dataInput, layoutInput)