Udostępnij za pośrednictwem


Wdrażanie obciążenia Kubernetes przy użyciu udostępniania procesora GPU w usłudze Azure Stack Edge Pro

W tym artykule opisano, jak konteneryzowane obciążenia mogą współużytkować procesory GPU na urządzeniu z procesorem GPU usługi Azure Stack Edge Pro. W tym artykule uruchomisz dwa zadania, jedno bez współużytkowania kontekstu procesora GPU i jedno z włączonym udostępnianiem kontekstu za pośrednictwem usługi Multi-Process Service (MPS) na urządzeniu. Aby uzyskać więcej informacji, zobacz Usługa wieloprocesowa.

Wymagania wstępne

Przed rozpoczęciem upewnij się, że:

  1. Masz dostęp do urządzenia gpu Pro usługi Azure Stack Edge, które zostało aktywowane i skonfigurowano obliczenia . Masz punkt końcowy interfejsu API platformy Kubernetes i dodano ten punkt końcowy do pliku na kliencie, który będzie uzyskiwać dostęp do hosts urządzenia.

  2. Masz dostęp do systemu klienckiego z obsługiwanym systemem operacyjnym. W przypadku korzystania z klienta systemu Windows system powinien uruchomić program PowerShell 5.0 lub nowszy, aby uzyskać dostęp do urządzenia.

  3. Utworzono przestrzeń nazw i użytkownika. Udzielono również użytkownikowi dostępu do tej przestrzeni nazw. Masz plik kubeconfig tej przestrzeni nazw zainstalowany w systemie klienckim, którego będziesz używać do uzyskiwania dostępu do urządzenia. Aby uzyskać szczegółowe instrukcje, zobacz Połączenie do klastra Kubernetes i zarządzania nim za pośrednictwem narzędzia kubectl na urządzeniu z procesorem GPU Usługi Azure Stack Edge Pro.

  4. Zapisz następujące wdrożenie yaml w systemie lokalnym. Użyjesz tego pliku do uruchomienia wdrożenia platformy Kubernetes. To wdrożenie jest oparte na prostych kontenerach CUDA, które są publicznie dostępne w firmie Nvidia.

    apiVersion: batch/v1
    kind: Job
    metadata:
      name: cuda-sample1
    spec:
      template:
        spec:
          hostPID: true
          hostIPC: true
          containers:
            - name: cuda-sample-container1
              image: nvidia/samples:nbody
              command: ["/tmp/nbody"]
              args: ["-benchmark", "-i=1000"]
              env:
              - name: NVIDIA_VISIBLE_DEVICES
                value: "0"
          restartPolicy: "Never"
      backoffLimit: 1
    ---
    
    apiVersion: batch/v1
    kind: Job
    metadata:
      name: cuda-sample2
    spec:
      template:
        metadata:
        spec:
          hostPID: true
          hostIPC: true
          containers:
            - name: cuda-sample-container2
              image: nvidia/samples:nbody
              command: ["/tmp/nbody"]
              args: ["-benchmark", "-i=1000"]
              env:
              - name: NVIDIA_VISIBLE_DEVICES
                value: "0"
          restartPolicy: "Never"
      backoffLimit: 1
    

Weryfikowanie sterownika procesora GPU, wersja CUDA

Pierwszym krokiem jest sprawdzenie, czy na urządzeniu jest uruchomiony wymagany sterownik procesora GPU i wersje CUDA.

  1. Połączenie do interfejsu programu PowerShell urządzenia.

  2. Uruchom następujące polecenie:

    Get-HcsGpuNvidiaSmi
    
  3. W danych wyjściowych firmy Nvidia zanotuj wersję procesora GPU i wersję CUDA na urządzeniu. Jeśli korzystasz z oprogramowania Azure Stack Edge 2102, ta wersja będzie odpowiadać następującym wersjom sterowników:

    • Wersja sterownika procesora GPU: 460.32.03
    • WERSJA CUDA: 11.2

    Oto przykładowe dane wyjściowe:

    [10.100.10.10]: PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Wed Mar  3 12:24:27 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 00002C74:00:00.0 Off |                    0 |
    | N/A   34C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |  No running processes found                                                 |
    +-----------------------------------------------------------------------------+
    [10.100.10.10]: PS> 
    
  4. Pozostaw tę sesję otwartą, ponieważ będzie ona używana do wyświetlania danych wyjściowych rozwiązania Nvidia smi w całym artykule.

Zadanie bez udostępniania kontekstu

Uruchomisz pierwsze zadanie, aby wdrożyć aplikację na urządzeniu w przestrzeni nazw mynamesp1. To wdrożenie aplikacji pokaże również, że udostępnianie kontekstu procesora GPU nie jest domyślnie włączone.

  1. Wyświetl listę wszystkich zasobników uruchomionych w przestrzeni nazw. Uruchom następujące polecenie:

    kubectl get pods -n <Name of the namespace>
    

    Oto przykładowe dane wyjściowe:

    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    No resources found.
    
  2. Uruchom zadanie wdrożenia na urządzeniu przy użyciu podanego wcześniej pliku deployment.yaml. Uruchom następujące polecenie:

    kubectl apply -f <Path to the deployment .yaml> -n <Name of the namespace> 
    

    To zadanie tworzy dwa kontenery i uruchamia symulację n-treści w obu kontenerach. Liczba iteracji symulacji jest określona w pliku .yaml.

    Oto przykładowe dane wyjściowe:

    PS C:\WINDOWS\system32> kubectl apply -f -n mynamesp1 C:\gpu-sharing\k8-gpusharing.yaml
    job.batch/cuda-sample1 created
    job.batch/cuda-sample2 created
    PS C:\WINDOWS\system32>
    
  3. Aby wyświetlić listę zasobników uruchomionych we wdrożeniu, uruchom następujące polecenie:

    kubectl get pods -n <Name of the namespace>
    

    Oto przykładowe dane wyjściowe:

    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    NAME                 READY   STATUS    RESTARTS   AGE
    cuda-sample1-27srm   1/1     Running   0          28s
    cuda-sample2-db9vx   1/1     Running   0          27s
    PS C:\WINDOWS\system32>
    

    Na urządzeniu znajdują się dwa zasobniki i cuda-sample1-cf979886d-xcwsq cuda-sample2-68b4899948-vcv68 uruchomione.

  4. Pobierz szczegóły zasobników. Uruchom następujące polecenie:

    kubectl -n <Name of the namespace> describe <Name of the job> 
    

    Oto przykładowe dane wyjściowe:

    PS C:\WINDOWS\system32> kubectl -n mynamesp1 describe job.batch/cuda-sample1;  kubectl -n mynamesp1 describe job.batch/cuda-sample2
    Name:           cuda-sample1
    Namespace:      mynamesp1
    Selector:       controller-uid=22783f76-6af1-490d-b6eb-67dd4cda0e1f
    Labels:         controller-uid=22783f76-6af1-490d-b6eb-67dd4cda0e1f
                    job-name=cuda-sample1
    Annotations:    kubectl.kubernetes.io/last-applied-configuration:
                      {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample1","namespace":"mynamesp1"},"spec":{"backoffLimit":1...
    Parallelism:    1
    Completions:    1
    Start Time:     Wed, 03 Mar 2021 12:25:34 -0800
    Pods Statuses:  1 Running / 0 Succeeded / 0 Failed
    Pod Template:
      Labels:  controller-uid=22783f76-6af1-490d-b6eb-67dd4cda0e1f
               job-name=cuda-sample1
      Containers:
       cuda-sample-container1:
        Image:      nvidia/samples:nbody
        Port:       <none>
        Host Port:  <none>
        Command:
          /tmp/nbody
        Args:
          -benchmark
          -i=10000
        Environment:
          NVIDIA_VISIBLE_DEVICES:  0
        Mounts:                    <none>
      Volumes:                     <none>
    Events:
      Type    Reason            Age   From            Message
      ----    ------            ----  ----            -------
      Normal  SuccessfulCreate  60s   job-controller  Created pod: cuda-sample1-27srm
    Name:           cuda-sample2
    Namespace:      mynamesp1
    Selector:       controller-uid=e68c8d5a-718e-4880-b53f-26458dc24381
    Labels:         controller-uid=e68c8d5a-718e-4880-b53f-26458dc24381
                    job-name=cuda-sample2
    Annotations:    kubectl.kubernetes.io/last-applied-configuration:
                      {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample2","namespace":"mynamesp1"},"spec":{"backoffLimit":1...
    Parallelism:    1
    Completions:    1
    Start Time:     Wed, 03 Mar 2021 12:25:35 -0800
    Pods Statuses:  1 Running / 0 Succeeded / 0 Failed
    Pod Template:
      Labels:  controller-uid=e68c8d5a-718e-4880-b53f-26458dc24381
               job-name=cuda-sample2
      Containers:
       cuda-sample-container2:
        Image:      nvidia/samples:nbody
        Port:       <none>
        Host Port:  <none>
        Command:
          /tmp/nbody
        Args:
          -benchmark
          -i=10000
        Environment:
          NVIDIA_VISIBLE_DEVICES:  0
        Mounts:                    <none>
      Volumes:                     <none>
    Events:
      Type    Reason            Age   From            Message
      ----    ------            ----  ----            -------
      Normal  SuccessfulCreate  60s   job-controller  Created pod: cuda-sample2-db9vx
    PS C:\WINDOWS\system32>
    

    Dane wyjściowe wskazują, że oba zasobniki zostały pomyślnie utworzone przez zadanie.

  5. Podczas gdy oba kontenery uruchamiają symulację n-body, wyświetl wykorzystanie procesora GPU z danych wyjściowych firmy Nvidia. Przejdź do interfejsu programu PowerShell urządzenia i uruchom polecenie Get-HcsGpuNvidiaSmi.

    Oto przykładowe dane wyjściowe, gdy oba kontenery uruchamiają symulację n-treści:

    [10.100.10.10]: PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Wed Mar  3 12:26:41 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 00002C74:00:00.0 Off |                    0 |
    | N/A   64C    P0    69W /  70W |    221MiB / 15109MiB |    100%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A    197976      C   /tmp/nbody                        109MiB |
    |    0   N/A  N/A    198051      C   /tmp/nbody                        109MiB |
    +-----------------------------------------------------------------------------+
    [10.100.10.10]: PS>    
    

    Jak widać, istnieją dwa kontenery (Type = C) uruchomione z symulacją n-body na procesorze GPU 0.

  6. Monitoruj symulację n-ciała. get pod Uruchom polecenia. Oto przykładowe dane wyjściowe, gdy symulacja jest uruchomiona.

    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    NAME                 READY   STATUS    RESTARTS   AGE
    cuda-sample1-27srm   1/1     Running   0          70s
    cuda-sample2-db9vx   1/1     Running   0          69s
    PS C:\WINDOWS\system32>
    

    Po zakończeniu symulacji dane wyjściowe będą wskazywać, że. Oto przykładowe dane wyjściowe:

    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    NAME                 READY   STATUS      RESTARTS   AGE
    cuda-sample1-27srm   0/1     Completed   0          2m54s
    cuda-sample2-db9vx   0/1     Completed   0          2m53s
    PS C:\WINDOWS\system32>
    
  7. Po zakończeniu symulacji można wyświetlić dzienniki i łączny czas ukończenia symulacji. Uruchom następujące polecenie:

    kubectl logs -n <Name of the namespace> <pod name>
    

    Oto przykładowe dane wyjściowe:

    PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample1-27srm
    Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
    ===========// CUT //===================// CUT //=====================  
    > Windowed mode
    > Simulation data stored in video memory
    > Single precision floating point simulation
    > 1 Devices used for simulation
    GPU Device 0: "Turing" with compute capability 7.5
    
    > Compute 7.5 CUDA device: [Tesla T4]
    40960 bodies, total time for 10000 iterations: 170398.766 ms
    = 98.459 billion interactions per second
    = 1969.171 single-precision GFLOP/s at 20 flops per interaction
    PS C:\WINDOWS\system32>
    
    PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample2-db9vx
    Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
    ===========// CUT //===================// CUT //=====================
    > Windowed mode
    > Simulation data stored in video memory
    > Single precision floating point simulation
    > 1 Devices used for simulation
    GPU Device 0: "Turing" with compute capability 7.5
    
    > Compute 7.5 CUDA device: [Tesla T4]
    40960 bodies, total time for 10000 iterations: 170368.859 ms
    = 98.476 billion interactions per second
    = 1969.517 single-precision GFLOP/s at 20 flops per interaction
    PS C:\WINDOWS\system32>    
    
  8. W tej chwili na procesorze GPU nie powinny być uruchomione żadne procesy. Możesz to sprawdzić, wyświetlając wykorzystanie procesora GPU przy użyciu danych wyjściowych firmy Nvidia.

    [10.100.10.10]: PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Wed Mar  3 12:32:52 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 00002C74:00:00.0 Off |                    0 |
    | N/A   38C    P8     9W /  70W |      0MiB / 15109MiB |      0%      Default |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |  No running processes found                                                 |
    +-----------------------------------------------------------------------------+
    [10.100.10.10]: PS>
    

Zadanie z udostępnianiem kontekstu

Uruchomisz drugie zadanie, aby wdrożyć symulację n-treści w dwóch kontenerach CUDA, gdy współużytkowanie kontekstu procesora GPU jest włączone, choć mpS. Najpierw włączysz usługę MPS na urządzeniu.

  1. Połączenie do interfejsu programu PowerShell urządzenia.

  2. Aby włączyć usługę MPS na urządzeniu Start-HcsGpuMPS , uruchom polecenie .

    [10.100.10.10]: PS>Start-HcsGpuMPS
    K8S-1HXQG13CL-1HXQG13:
    
    Set compute mode to EXCLUSIVE_PROCESS for GPU 00002C74:00:00.0.
    All done.
    Created nvidia-mps.service
    [10.100.10.10]: PS>    
    
  3. Uruchom zadanie przy użyciu tego samego wdrożenia yaml , którego użyto wcześniej. Może być konieczne usunięcie istniejącego wdrożenia. Zobacz Usuwanie wdrożenia.

    Oto przykładowe dane wyjściowe:

    PS C:\WINDOWS\system32> kubectl -n mynamesp1 delete -f C:\gpu-sharing\k8-gpusharing.yaml
    job.batch "cuda-sample1" deleted
    job.batch "cuda-sample2" deleted
    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    No resources found.
    PS C:\WINDOWS\system32> kubectl -n mynamesp1 apply -f C:\gpu-sharing\k8-gpusharing.yaml
    job.batch/cuda-sample1 created
    job.batch/cuda-sample2 created
    PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
    NAME                 READY   STATUS    RESTARTS   AGE
    cuda-sample1-vcznt   1/1     Running   0          21s
    cuda-sample2-zkx4w   1/1     Running   0          21s
    PS C:\WINDOWS\system32> kubectl -n mynamesp1 describe job.batch/cuda-sample1;  kubectl -n mynamesp1 describe job.batch/cuda-sample2
    Name:           cuda-sample1
    Namespace:      mynamesp1
    Selector:       controller-uid=ed06bdf0-a282-4b35-a2a0-c0d36303a35e
    Labels:         controller-uid=ed06bdf0-a282-4b35-a2a0-c0d36303a35e
                    job-name=cuda-sample1
    Annotations:    kubectl.kubernetes.io/last-applied-configuration:
                      {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample1","namespace":"mynamesp1"},"spec":{"backoffLimit":1...
    Parallelism:    1
    Completions:    1
    Start Time:     Wed, 03 Mar 2021 21:51:51 -0800
    Pods Statuses:  1 Running / 0 Succeeded / 0 Failed
    Pod Template:
      Labels:  controller-uid=ed06bdf0-a282-4b35-a2a0-c0d36303a35e
               job-name=cuda-sample1
      Containers:
       cuda-sample-container1:
        Image:      nvidia/samples:nbody
        Port:       <none>
        Host Port:  <none>
        Command:
          /tmp/nbody
        Args:
          -benchmark
          -i=10000
        Environment:
          NVIDIA_VISIBLE_DEVICES:  0
        Mounts:                    <none>
      Volumes:                     <none>
    Events:
      Type    Reason            Age   From            Message
      ----    ------            ----  ----            -------
      Normal  SuccessfulCreate  46s   job-controller  Created pod: cuda-sample1-vcznt
    Name:           cuda-sample2
    Namespace:      mynamesp1
    Selector:       controller-uid=6282b8fa-e76d-4f45-aa85-653ee0212b29
    Labels:         controller-uid=6282b8fa-e76d-4f45-aa85-653ee0212b29
                    job-name=cuda-sample2
    Annotations:    kubectl.kubernetes.io/last-applied-configuration:
                      {"apiVersion":"batch/v1","kind":"Job","metadata":{"annotations":{},"name":"cuda-sample2","namespace":"mynamesp1"},"spec":{"backoffLimit":1...
    Parallelism:    1
    Completions:    1
    Start Time:     Wed, 03 Mar 2021 21:51:51 -0800
    Pods Statuses:  1 Running / 0 Succeeded / 0 Failed
    Pod Template:
      Labels:  controller-uid=6282b8fa-e76d-4f45-aa85-653ee0212b29
               job-name=cuda-sample2
      Containers:
       cuda-sample-container2:
        Image:      nvidia/samples:nbody
        Port:       <none>
        Host Port:  <none>
        Command:
          /tmp/nbody
        Args:
          -benchmark
          -i=10000
        Environment:
          NVIDIA_VISIBLE_DEVICES:  0
        Mounts:                    <none>
      Volumes:                     <none>
    Events:
      Type    Reason            Age   From            Message
      ----    ------            ----  ----            -------
      Normal  SuccessfulCreate  47s   job-controller  Created pod: cuda-sample2-zkx4w
    PS C:\WINDOWS\system32>
    
  4. Gdy symulacja jest uruchomiona, możesz wyświetlić dane wyjściowe smi firmy Nvidia. Dane wyjściowe przedstawiają procesy odpowiadające kontenerom cuda (typ M + C) z symulacją n-treści i usługą MPS (typ C) jako uruchomioną. Wszystkie te procesy współdzielą procesor GPU 0.

    PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Mon Mar  3 21:54:50 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 0000E00B:00:00.0 Off |                    0 |
    | N/A   45C    P0    68W /  70W |    242MiB / 15109MiB |    100%   E. Process |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A    144377    M+C   /tmp/nbody                        107MiB |
    |    0   N/A  N/A    144379    M+C   /tmp/nbody                        107MiB |
    |    0   N/A  N/A    144443      C   nvidia-cuda-mps-server             25MiB |
    +-----------------------------------------------------------------------------+
    
  5. Po zakończeniu symulacji można wyświetlić dzienniki i łączny czas ukończenia symulacji. Uruchom następujące polecenie:

        PS C:\WINDOWS\system32> kubectl get pods -n mynamesp1
        NAME                 READY   STATUS      RESTARTS   AGE
        cuda-sample1-vcznt   0/1     Completed   0          5m44s
        cuda-sample2-zkx4w   0/1     Completed   0          5m44s
        PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample1-vcznt
        Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
        ===========// CUT //===================// CUT //=====================    
        > Windowed mode
        > Simulation data stored in video memory
        > Single precision floating point simulation
        > 1 Devices used for simulation
        GPU Device 0: "Turing" with compute capability 7.5
    
        > Compute 7.5 CUDA device: [Tesla T4]
        40960 bodies, total time for 10000 iterations: 154979.453 ms
        = 108.254 billion interactions per second
        = 2165.089 single-precision GFLOP/s at 20 flops per interaction
    
    
        PS C:\WINDOWS\system32> kubectl logs -n mynamesp1 cuda-sample2-zkx4w
        Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
        ===========// CUT //===================// CUT //=====================
        > Windowed mode
        > Simulation data stored in video memory
        > Single precision floating point simulation
        > 1 Devices used for simulation
        GPU Device 0: "Turing" with compute capability 7.5
    
        > Compute 7.5 CUDA device: [Tesla T4]
        40960 bodies, total time for 10000 iterations: 154986.734 ms
        = 108.249 billion interactions per second
        = 2164.987 single-precision GFLOP/s at 20 flops per interaction
        PS C:\WINDOWS\system32>
    
  6. Po zakończeniu symulacji można ponownie wyświetlić dane wyjściowe smi firmy Nvidia. Tylko proces nvidia-cuda-mps-server dla usługi MPS jest wyświetlany jako uruchomiony.

    PS>Get-HcsGpuNvidiaSmi
    K8S-1HXQG13CL-1HXQG13:
    
    Mon Mar  3 21:59:55 2021
    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 460.32.03    Driver Version: 460.32.03    CUDA Version: 11.2     |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |                               |                      |               MIG M. |
    |===============================+======================+======================|
    |   0  Tesla T4            On   | 0000E00B:00:00.0 Off |                    0 |
    | N/A   37C    P8     9W /  70W |     28MiB / 15109MiB |      0%   E. Process |
    |                               |                      |                  N/A |
    +-------------------------------+----------------------+----------------------+
    
    +-----------------------------------------------------------------------------+
    | Processes:                                                                  |
    |  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
    |        ID   ID                                                   Usage      |
    |=============================================================================|
    |    0   N/A  N/A    144443      C   nvidia-cuda-mps-server             25MiB |
    +-----------------------------------------------------------------------------+
    

Usuwanie wdrożenia

Może być konieczne usunięcie wdrożeń podczas uruchamiania z włączonym programem MPS i wyłączeniem usługi MPS na urządzeniu.

Aby usunąć wdrożenie na urządzeniu, uruchom następujące polecenie:

kubectl delete -f <Path to the deployment .yaml> -n <Name of the namespace> 

Oto przykładowe dane wyjściowe:

PS C:\WINDOWS\system32> kubectl delete -f 'C:\gpu-sharing\k8-gpusharing.yaml' -n mynamesp1
deployment.apps "cuda-sample1" deleted
deployment.apps "cuda-sample2" deleted
PS C:\WINDOWS\system32>

Następne kroki