Uwaga
Dostęp do tej strony wymaga autoryzacji. Może spróbować zalogować się lub zmienić katalogi.
Dostęp do tej strony wymaga autoryzacji. Możesz spróbować zmienić katalogi.
Ten artykuł zawiera przykłady kodu dla niestandardowych aplikacji stanowych. Databricks zaleca używanie wbudowanych metod stanowych do typowych operacji, takich jak agregacje i łączenia.
Wzorce w tym artykule używają transformWithState
operatora i skojarzonych klas dostępnych w Public Preview w środowisku Databricks Runtime 16.2 lub nowszym. Zobacz sekcję Budowanie niestandardowej aplikacji stanowej.
Notatka
Język Python używa operatora transformWithStateInPandas
, aby zapewnić tę samą funkcjonalność. W poniższych przykładach podano kod w językach Python i Scala.
Wymagania
Operator transformWithState
oraz powiązane interfejsy API i klasy mają następujące wymagania:
- Dostępne w środowisku Databricks Runtime 16.2 lub nowszym.
- Środowisko obliczeniowe musi używać trybu dostępu dedykowanego lub bez izolacji.
- Należy użyć dostawcy magazynu stanów bazy danych RocksDB. Usługa Databricks zaleca włączenie bazy danych RocksDB w ramach konfiguracji obliczeniowej.
-
transformWithStateInPandas
obsługuje standardowy tryb dostępu w środowisku Databricks Runtime 16.3 lub nowszym.
Notatka
Aby włączyć dostawcę magazynu stanów bazy danych RocksDB dla bieżącej sesji, uruchom następujące polecenie:
spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")
Wolno zmieniający się wymiar (SCD) typu 1
Poniższy kod jest przykładem implementacji typu SCD 1 przy użyciu transformWithState
. Typ SCD 1 śledzi tylko najnowszą wartość dla danego pola.
Notatka
Tabele strumieniowe i AUTO CDC ... INTO
można użyć do zaimplementowania typu SCD 1 lub 2 z wykorzystaniem tabel wspieranych przez Delta Lake. W tym przykładzie zaimplementowano typ SCD 1 w składzie stanów, co zapewnia mniejsze opóźnienie dla aplikacji prawie w czasie rzeczywistym.
Pyton
# Import the necessary libraries
import pandas as pd
from pyspark.sql.streaming import StatefulProcessor, StatefulProcessorHandle
from pyspark.sql.types import StructType, StructField, LongType, StringType
from typing import Iterator
# Set the state store provider to RocksDB
spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")
# Define the output schema for the streaming query
output_schema = StructType([
StructField("user", StringType(), True),
StructField("time", LongType(), True),
StructField("location", StringType(), True)
])
# Define a custom StatefulProcessor for slowly changing dimension type 1 (SCD1) operations
class SCDType1StatefulProcessor(StatefulProcessor):
def init(self, handle: StatefulProcessorHandle) -> None:
self.handle = handle
# Define the schema for the state value
value_state_schema = StructType([...])
StructField("user", StringType(), True),
StructField("time", LongType(), True),
StructField("location", StringType(), True)
])
# Initialize the state to store the latest location for each user
self.latest_location = handle.getValueState("latestLocation", value_state_schema)
def handleInputRows(self, key, rows, timer_values) -> Iterator[pd.DataFrame]:
# Find the row with the maximum time value
max_row = None
max_time = float('-inf')
for pdf in rows:
for _, pd_row in pdf.iterrows():
time_value = pd_row["time"]
if time_value > max_time:
max_time = time_value
max_row = tuple(pd_row)
# Check whether state exists and update if necessary
exists = self.latest_location.exists()
if not exists or max_row[1] > self.latest_location.get()[1]:
# Update the state with the new max row
self.latest_location.update(max_row)
# Yield the updated row
yield pd.DataFrame(
{"user": (max_row[0],), "time": (max_row[1],), "location": (max_row[2],)}
)
# Yield an empty DataFrame if no update is needed
yield pd.DataFrame()
def close(self) -> None:
# No cleanup needed
pass
# Apply the stateful transformation to the input DataFrame
(df.groupBy("user")
.transformWithStateInPandas(
statefulProcessor=SCDType1StatefulProcessor(),
outputStructType=output_schema,
outputMode="Update",
timeMode="None",
)
.writeStream... # Continue with stream writing configuration
)
Skala
// Define a case class to represent user location data
case class UserLocation(
user: String,
time: Long,
location: String)
// Define a stateful processor for slowly changing dimension type 1 (SCD1) operations
class SCDType1StatefulProcessor extends StatefulProcessor[String, UserLocation, UserLocation] {
import org.apache.spark.sql.{Encoders}
// Transient value state to store the latest location for each user
@transient private var _latestLocation: ValueState[UserLocation] = _
// Initialize the state store
override def init(
outputMode: OutputMode,
timeMode: TimeMode): Unit = {
// Create a value state named "locationState" using UserLocation encoder
// TTLConfig.NONE means the state has no expiration
_latestLocation = getHandle.getValueState[UserLocation]("locationState",
Encoders.product[UserLocation], TTLConfig.NONE)
}
// Process input rows and update state
override def handleInputRows(
key: String,
inputRows: Iterator[UserLocation],
timerValues: TimerValues): Iterator[UserLocation] = {
// Find the location with the maximum timestamp from input rows
val maxNewLocation = inputRows.maxBy(_.time)
// Update state and emit output if:
// 1. No previous state exists, or
// 2. New location has a more recent timestamp than the stored one
if (_latestLocation.getOption().isEmpty || maxNewLocation.time > _latestLocation.get().time) {
_latestLocation.update(maxNewLocation)
Iterator.single(maxNewLocation) // Emit the updated location
} else {
Iterator.empty // No update needed, emit nothing
}
}
}
}
Wolno zmieniający się typ wymiaru (SCD) 2
Poniższe notesy zawierają przykład implementacji typu SCD 2 przy użyciu transformWithState
w języku Python lub Scala.
Typ SCD 2 języka Python
Typ SCD 2 Scala
Detektor przestojów
transformWithState
implementuje czasomierze, aby umożliwić podejmowanie akcji na podstawie upływu czasu, nawet jeśli żadne rekordy dla danego klucza nie są przetwarzane w mikropartii.
W poniższym przykładzie zaimplementowany jest wzorzec detektora przestojów. Za każdym razem, gdy dla danego klucza jest widoczna nowa wartość, aktualizuje wartość stanu lastSeen
, czyści wszelkie istniejące czasomierze i resetuje czasomierz w przyszłości.
Gdy czasomierz wygaśnie, aplikacja emituje czas, który upłynął od ostatniego zaobserwowanego zdarzenia dla klucza. Następnie ustawia nowy czasomierz, aby emitować aktualizację 10 sekund później.
Pyton
import datetime
import time
class DownTimeDetectorStatefulProcessor(StatefulProcessor):
def init(self, handle: StatefulProcessorHandle) -> None:
# Define the schema for the state value (timestamp)
state_schema = StructType([StructField("value", TimestampType(), True)])
self.handle = handle
# Initialize state to store the last seen timestamp for each key
self.last_seen = handle.getValueState("last_seen", state_schema)
def handleExpiredTimer(self, key, timerValues, expiredTimerInfo) -> Iterator[pd.DataFrame]:
latest_from_existing = self.last_seen.get()
# Calculate downtime duration
downtime_duration = timerValues.getCurrentProcessingTimeInMs() - int(time.time() * 1000)
# Register a new timer for 10 seconds in the future
self.handle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 10000)
# Yield a DataFrame with the key and downtime duration
yield pd.DataFrame(
{
"id": key,
"timeValues": str(downtime_duration),
}
)
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
# Find the row with the maximum timestamp
max_row = max((tuple(pdf.iloc[0]) for pdf in rows), key=lambda row: row[1])
# Get the latest timestamp from the existing state or use epoch start if a timestamp doesn't exist
if self.last_seen.exists():
latest_from_existing = self.last_seen.get()
else:
latest_from_existing = datetime.fromtimestamp(0)
# If the new data is more recent than the existing state
if latest_from_existing < max_row[1]:
# Delete all existing timers
for timer in self.handle.listTimers():
self.handle.deleteTimer(timer)
# Update the last seen timestamp
self.last_seen.update((max_row[1],))
# Register a new timer for 5 seconds in the future
self.handle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 5000)
# Get current processing time in milliseconds
timestamp_in_millis = str(timerValues.getCurrentProcessingTimeInMs())
# Yield a DataFrame with the key and current timestamp
yield pd.DataFrame({"id": key, "timeValues": timestamp_in_millis})
def close(self) -> None:
# No cleanup needed
pass
Skala
import java.sql.Timestamp
import org.apache.spark.sql.Encoders
// The (String, Timestamp) schema represents an (id, time). We want to do downtime
// detection on every single unique sensor, where each sensor has a sensor ID.
class DowntimeDetector(duration: Duration) extends
StatefulProcessor[String, (String, Timestamp), (String, Duration)] {
@transient private var _lastSeen: ValueState[Timestamp] = _
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
_lastSeen = getHandle.getValueState[Timestamp]("lastSeen", Encoders.TIMESTAMP, TTLConfig.NONE)
}
// The logic here is as follows: find the largest timestamp seen so far. Set a timer for
// the duration later.
override def handleInputRows(
key: String,
inputRows: Iterator[(String, Timestamp)],
timerValues: TimerValues): Iterator[(String, Duration)] = {
val latestRecordFromNewRows = inputRows.maxBy(_._2.getTime)
// Use getOrElse to initiate state variable if it doesn't exist
val latestTimestampFromExistingRows = _lastSeen.getOption().getOrElse(new Timestamp(0))
val latestTimestampFromNewRows = latestRecordFromNewRows._2
if (latestTimestampFromNewRows.after(latestTimestampFromExistingRows)) {
// Cancel the one existing timer, since we have a new latest timestamp.
// We call "listTimers()" because we don't know ahead of time what
// the timestamp of the existing timer will be.
getHandle.listTimers().foreach(timer => getHandle.deleteTimer(timer))
_lastSeen.update(latestTimestampFromNewRows)
// Use timerValues to schedule a timer using processing time.
getHandle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + duration.toMillis)
} else {
// No new latest timestamp, so there is no need to update the state or set a timer.
}
Iterator.empty
}
override def handleExpiredTimer(
key: String,
timerValues: TimerValues,
expiredTimerInfo: ExpiredTimerInfo): Iterator[(String, Duration)] = {
val latestTimestamp = _lastSeen.get()
val downtimeDuration = new Duration(
timerValues.getCurrentProcessingTimeInMs() - latestTimestamp.getTime)
// Register another timer that will fire in 10 seconds.
// Timers can be registered anywhere but init()
getHandle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 10000)
Iterator((key, downtimeDuration))
}
}
Migrowanie istniejących informacji o stanie
W poniższym przykładzie pokazano, jak zaimplementować stanową aplikację, która akceptuje stan początkowy. Możesz dodać obsługę stanu początkowego do dowolnej aplikacji stanowej, ale stan początkowy można ustawić tylko podczas pierwszego inicjowania aplikacji.
W tym przykładzie użyto czytnika statestore
do załadowania istniejących informacji o stanie ze ścieżki punktu kontrolnego. Przykładowy przypadek użycia dla tego wzorca polega na migracji ze starszych aplikacji stanowych do transformWithState
.
Pyton
# Import the necessary libraries
import pandas as pd
from pyspark.sql.streaming import StatefulProcessor, StatefulProcessorHandle
from pyspark.sql.types import StructType, StructField, LongType, StringType, IntegerType
from typing import Iterator
# Set RocksDB as the state store provider for better performance
spark.conf.set("spark.sql.streaming.stateStore.providerClass", "org.apache.spark.sql.execution.streaming.state.RocksDBStateStoreProvider")
"""
Input schema is as below
input_schema = StructType(
[StructField("id", StringType(), True)],
[StructField("value", StringType(), True)]
)
"""
# Define the output schema for the streaming query
output_schema = StructType([
StructField("id", StringType(), True),
StructField("accumulated", StringType(), True)
])
class AccumulatedCounterStatefulProcessorWithInitialState(StatefulProcessor):
def init(self, handle: StatefulProcessorHandle) -> None:
# Define the schema for the state value (integer)
state_schema = StructType([StructField("value", IntegerType(), True)])
# Initialize state to store the accumulated counter for each id
self.counter_state = handle.getValueState("counter_state", state_schema)
self.handle = handle
def handleInputRows(self, key, rows, timerValues) -> Iterator[pd.DataFrame]:
# Check if state exists for the current key
exists = self.counter_state.exists()
if exists:
value_row = self.counter_state.get()
existing_value = value_row[0]
else:
existing_value = 0
accumulated_value = existing_value
# Process input rows and accumulate values
for pdf in rows:
value = pdf["value"].astype(int).sum()
accumulated_value += value
# Update the state with the new accumulated value
self.counter_state.update((accumulated_value,))
# Yield a DataFrame with the key and accumulated value
yield pd.DataFrame({"id": key, "accumulated": str(accumulated_value)})
def handleInitialState(self, key, initialState, timerValues) -> None:
# Initialize the state with the provided initial value
init_val = initialState.at[0, "initVal"]
self.counter_state.update((init_val,))
def close(self) -> None:
# No cleanup needed
pass
# Load initial state from a checkpoint directory
initial_state = spark.read.format("statestore")
.option("path", "$checkpointsDir")
.load()
# Apply the stateful transformation to the input DataFrame
df.groupBy("id")
.transformWithStateInPandas(
statefulProcessor=AccumulatedCounterStatefulProcessorWithInitialState(),
outputStructType=output_schema,
outputMode="Update",
timeMode="None",
initialState=initial_state,
)
.writeStream... # Continue with stream writing configuration
Skala
// Import the necessary libraries
import org.apache.spark.sql.streaming._
import org.apache.spark.sql.{Dataset, Encoder, Encoders, DataFrame}
import org.apache.spark.sql.types._
// Define a stateful processor that can handle the initial state
class InitialStateStatefulProcessor extends StatefulProcessorWithInitialState[String, (String, String, String), (String, String), (String, Int)] {
// Transient value state to store the accumulated value
@transient protected var valueState: ValueState[Int] = _
// Initialize the state store
override def init(
outputMode: OutputMode,
timeMode: TimeMode): Unit = {
// Create a value state named "valueState" using Int encoder
// TTLConfig.NONE means the state has no automatic expiration
valueState = getHandle.getValueState[Int]("valueState",
Encoders.scalaInt, TTLConfig.NONE)
}
// Process input rows and update state
override def handleInputRows(
key: String,
inputRows: Iterator[(String, String, String)],
timerValues: TimerValues): Iterator[(String, String)] = {
var existingValue = 0
// Retrieve existing value from state if it exists
if (valueState.exists()) {
existingValue += valueState.get()
}
var accumulatedValue = existingValue
// Accumulate values from input rows
for (row <- inputRows) {
accumulatedValue += row._2.toInt
}
// Update the state with the new accumulated value
valueState.update(accumulatedValue)
// Return the key and accumulated value as a string
Iterator((key, accumulatedValue.toString))
}
// Handle initial state when provided
override def handleInitialState(
key: String, initialState: (String, Int), timerValues: TimerValues): Unit = {
// Update the state with the initial value
valueState.update(initialState._2)
}
}
Migrowanie tabeli delty do magazynu stanów na potrzeby inicjowania
Poniższe notesy zawierają przykład inicjowania wartości magazynu stanów z tabeli delty przy użyciu transformWithState
w języku Python lub Scala.
Inicjowanie stanu z języka Delta Python
Inicjowanie stanu z Delta Scala
Śledzenie sesji
Poniższe notesy zawierają przykład śledzenia sesji przy użyciu transformWithState
w języku Python lub Scala.
Śledzenie sesji w języku Python
Scala śledzenia sesji
Niestandardowe dołączanie strumienia do strumienia przy użyciu transformWithState
Poniższy kod przedstawia niestandardowe sprzężenia strumienia w wielu strumieniach przy użyciu transformWithState
. Możesz użyć tego podejścia zamiast wbudowanego operatora łączenia z następujących powodów:
- Należy użyć trybu aktualizacji danych wyjściowych, który nie obsługuje sprzężeń między strumieniami. Jest to szczególnie przydatne w przypadku aplikacji o mniejszych opóźnieniach.
- Należy nadal wykonywać sprzężenia dla wierszy przybyłych z opóźnieniem (po wygaśnięciu punktu kontrolnego).
- Należy wykonać wiele-do-wielu połączeń strumieni.
W tym przykładzie użytkownik ma pełną kontrolę nad logiką wygaśnięcia stanu, umożliwiając rozszerzenie dynamicznego okresu przechowywania w celu obsługi zdarzeń przychodzących w niewłaściwej kolejności nawet po znaku wodnym.
Pyton
# Import the necessary libraries
import pandas as pd
from pyspark.sql.streaming import StatefulProcessor, StatefulProcessorHandle
from pyspark.sql.types import StructType, StructField, StringType, TimestampType
from typing import Iterator
# Define output schema for the joined data
output_schema = StructType([
StructField("user_id", StringType(), True),
StructField("event_type", StringType(), True),
StructField("timestamp", TimestampType(), True),
StructField("profile_name", StringType(), True),
StructField("email", StringType(), True),
StructField("preferred_category", StringType(), True)
])
class CustomStreamJoinProcessor(StatefulProcessor):
# Initialize stateful storage for user profiles, preferences, and event tracking.
def init(self, handle: StatefulProcessorHandle) -> None:
# Define schemas for different types of state data
profile_schema = StructType([
StructField("name", StringType(), True),
StructField("email", StringType(), True),
StructField("updated_at", TimestampType(), True)
])
preferences_schema = StructType([
StructField("preferred_category", StringType(), True),
StructField("updated_at", TimestampType(), True)
])
activity_schema = StructType([
StructField("event_type", StringType(), True),
StructField("timestamp", TimestampType(), True)
])
map_state_key_schema = StructType([
StructField("user_id", StringType(), True)
])
# Initialize state storage for user profiles, preferences, and activity
self.profile_state = handle.getMapState("user_profiles", map_state_key_schema, profile_schema)
self.preferences_state = handle.getMapState("user_preferences", map_state_key_schema, preferences_schema)
self.activity_state = handle.getMapState("user_activity", map_state_key_schema, activity_schema)
# Process incoming events and update the state
def handleInputRows(self, key, rows: Iterator[pd.DataFrame], timer_values) -> Iterator[pd.DataFrame]:
df = pd.concat(rows, ignore_index=True)
output_rows = []
for _, row in df.iterrows():
user_id = row["user_id"]
if "event_type" in row: # User activity event
self.activity_state.update_value(user_id, row.to_dict())
# Set a timer to process this event after a 10-second delay
self.handle.registerTimer(timer_values.get_current_processing_time_in_ms() + (10 * 1000))
elif "name" in row: # Profile update
self.profile_state.update_value(user_id, row.to_dict())
elif "preferred_category" in row: # Preference update
self.preferences_state.update_value(user_id, row.to_dict())
# No immediate output; processing will happen when the timer expires
return iter([])
# Perform lookup after delay, handling out-of-order and late-arriving events.
def handleExpiredTimer(self, key, timer_values, expired_timer_info) -> Iterator[pd.DataFrame]:
# Retrieve stored state for the user
user_activity = self.activity_state.get_value(key)
user_profile = self.profile_state.get_value(key)
user_preferences = self.preferences_state.get_value(key)
if user_activity:
# Combine data from different states into a single output row
output_row = {
"user_id": key,
"event_type": user_activity["event_type"],
"timestamp": user_activity["timestamp"],
"profile_name": user_profile.get("name") if user_profile else None,
"email": user_profile.get("email") if user_profile else None,
"preferred_category": user_preferences.get("preferred_category") if user_preferences else None
}
return iter([pd.DataFrame([output_row])])
return iter([])
def close(self) -> None:
# No cleanup needed
pass
# Apply transformWithState to the input DataFrame
(df.groupBy("user_id")
.transformWithStateInPandas(
statefulProcessor=CustomStreamJoinProcessor(),
outputStructType=output_schema,
outputMode="Append",
timeMode="ProcessingTime"
)
.writeStream... # Continue with stream writing configuration
)
Skala
// Import the necessary libraries
import org.apache.spark.sql.Encoders
import org.apache.spark.sql.streaming._
import org.apache.spark.sql.types.TimestampType
import java.sql.Timestamp
// Define a case class for enriched user events, combining user activity with profile and preference data
case class EnrichedUserEvent(
user_id: String,
event_type: String,
timestamp: Timestamp,
profile_name: Option[String],
email: Option[String],
preferred_category: Option[String]
)
// Custom stateful processor for stream-stream join
class CustomStreamJoinProcessor extends StatefulProcessor[String, UserEvent, EnrichedUserEvent] {
// Transient state variables to store user profiles, preferences, and activities
@transient private var _profileState: MapState[String, UserProfile] = _
@transient private var _preferencesState: MapState[String, UserPreferences] = _
@transient private var _activityState: MapState[String, UserEvent] = _
// Initialize state stores
override def init(outputMode: OutputMode, timeMode: TimeMode): Unit = {
_profileState = getHandle.getMapState[String, UserProfile]("profileState", Encoders.product[UserProfile], TTLConfig.NONE)
_preferencesState = getHandle.getMapState[String, UserPreferences]("preferencesState", Encoders.product[UserPreferences], TTLConfig.NONE)
_activityState = getHandle.getMapState[String, UserEvent]("activityState", Encoders.product[UserEvent], TTLConfig.NONE)
}
// Handle incoming user events
override def handleInputRows(
key: String,
inputRows: Iterator[UserEvent],
timerValues: TimerValues): Iterator[EnrichedUserEvent] = {
inputRows.foreach { event =>
if (event.event_type.nonEmpty) {
// Update activity state and set a timer for 10 seconds in the future
_activityState.update(key, event)
getHandle.registerTimer(timerValues.getCurrentProcessingTimeInMs() + 10000)
}
}
Iterator.empty
}
// Handle expired timers to produce enriched events
override def handleExpiredTimer(
key: String,
timerValues: TimerValues,
expiredTimerInfo: ExpiredTimerInfo): Iterator[EnrichedUserEvent] = {
// Retrieve user data from state stores
val userEvent = _activityState.getOption(key)
val userProfile = _profileState.getOption(key)
val userPreferences = _preferencesState.getOption(key)
if (userEvent.isDefined) {
// Create and return an enriched event if user activity exists
val enrichedEvent = EnrichedUserEvent(
user_id = key,
event_type = userEvent.get.event_type,
timestamp = userEvent.get.timestamp,
profile_name = userProfile.map(_.name),
email = userProfile.map(_.email),
preferred_category = userPreferences.map(_.preferred_category)
)
Iterator.single(enrichedEvent)
} else {
Iterator.empty
}
}
}
// Apply the custom stateful processor to the input DataFrame
val enrichedStream = df
.groupByKey(_.user_id)
.transformWithState(
new CustomStreamJoinProcessor(),
TimeMode.ProcessingTime(),
OutputMode.Append()
)
// Write the enriched stream to Delta Lake
enrichedStream.writeStream
.format("delta")
.outputMode("append")
.option("checkpointLocation", "/mnt/delta/checkpoints")
.start("/mnt/delta/enriched_events")
obliczenia Top-K
W poniższym przykładzie użyto ListState
z kolejką priorytetową, aby zachować i zaktualizować najważniejsze elementy K w strumieniu dla każdego klucza grupy w czasie zbliżonym do rzeczywistego.