DataLoaderExtensions.Load Metoda
Definicja
Ważne
Niektóre informacje odnoszą się do produktu w wersji wstępnej, który może zostać znacząco zmodyfikowany przed wydaniem. Firma Microsoft nie udziela żadnych gwarancji, jawnych lub domniemanych, w odniesieniu do informacji podanych w tym miejscu.
public static Microsoft.ML.IDataView Load (this Microsoft.ML.IDataLoader<Microsoft.ML.Data.IMultiStreamSource> loader, params string[] path);
static member Load : Microsoft.ML.IDataLoader<Microsoft.ML.Data.IMultiStreamSource> * string[] -> Microsoft.ML.IDataView
<Extension()>
Public Function Load (loader As IDataLoader(Of IMultiStreamSource), ParamArray path As String()) As IDataView
Parametry
- loader
- IDataLoader<IMultiStreamSource>
Moduł ładujący do użycia.
- path
- String[]
Co najmniej jedna ścieżka, z której mają być ładowane dane.
Zwraca
Przykłady
using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.DataOperations
{
public static class LoadingText
{
// This examples shows all the ways to load data with TextLoader.
public static void Example()
{
// Create 5 data files to illustrate different loading methods.
var dataFiles = new List<string>();
var random = new Random(1);
var dataDirectoryName = "DataDir";
Directory.CreateDirectory(dataDirectoryName);
for (int i = 0; i < 5; i++)
{
var fileName = Path.Combine(dataDirectoryName, $"Data_{i}.csv");
dataFiles.Add(fileName);
using (var fs = File.CreateText(fileName))
{
// Write without header with 10 random columns, forcing
// approximately 80% of values to be 0.
for (int line = 0; line < 10; line++)
{
var sb = new StringBuilder();
for (int pos = 0; pos < 10; pos++)
{
var value = random.NextDouble();
sb.Append((value < 0.8 ? 0 : value).ToString() + '\t');
}
fs.WriteLine(sb.ToString(0, sb.Length - 1));
}
}
}
// Create a TextLoader.
var mlContext = new MLContext();
var loader = mlContext.Data.CreateTextLoader(
columns: new[]
{
new TextLoader.Column("Features", DataKind.Single, 0, 9)
},
hasHeader: false
);
// Load a single file from path.
var singleFileData = loader.Load(dataFiles[0]);
PrintRowCount(singleFileData);
// Expected Output:
// 10
// Load all 5 files from path.
var multipleFilesData = loader.Load(dataFiles.ToArray());
PrintRowCount(multipleFilesData);
// Expected Output:
// 50
// Load all files using path wildcard.
var multipleFilesWildcardData =
loader.Load(Path.Combine(dataDirectoryName, "Data_*.csv"));
PrintRowCount(multipleFilesWildcardData);
// Expected Output:
// 50
// Create a TextLoader with user defined type.
var loaderWithCustomType =
mlContext.Data.CreateTextLoader<Data>(hasHeader: false);
// Load a single file from path.
var singleFileCustomTypeData = loaderWithCustomType.Load(dataFiles[0]);
PrintRowCount(singleFileCustomTypeData);
// Expected Output:
// 10
// Create a TextLoader with unknown column length to illustrate
// how a data sample may be used to infer column size.
var dataSample = new MultiFileSource(dataFiles[0]);
var loaderWithUnknownLength = mlContext.Data.CreateTextLoader(
columns: new[]
{
new TextLoader.Column("Features",
DataKind.Single,
new[] { new TextLoader.Range(0, null) })
},
dataSample: dataSample
);
var dataWithInferredLength = loaderWithUnknownLength.Load(dataFiles[0]);
var featuresColumn = dataWithInferredLength.Schema.GetColumnOrNull("Features");
if (featuresColumn.HasValue)
Console.WriteLine(featuresColumn.Value.ToString());
// Expected Output:
// Features: Vector<Single, 10>
//
// ML.NET infers the correct length of 10 for the Features column,
// which is of type Vector<Single>.
PrintRowCount(dataWithInferredLength);
// Expected Output:
// 10
// Save the data with 10 rows to a text file to illustrate the use of
// sparse format.
var sparseDataFileName = Path.Combine(dataDirectoryName, "saved_data.tsv");
using (FileStream stream = new FileStream(sparseDataFileName, FileMode.Create))
mlContext.Data.SaveAsText(singleFileData, stream);
// Since there are many zeroes in the data, it will be saved in a sparse
// representation to save disk space. The data may be forced to be saved
// in a dense representation by setting forceDense to true. The sparse
// data will look like the following:
//
// 10 7:0.943862259
// 10 3:0.989767134
// 10 0:0.949778438 8:0.823028445 9:0.886469543
//
// The sparse representation of the first row indicates that there are
// 10 columns, the column 7 (8-th column) has value 0.943862259, and other
// omitted columns have value 0.
// Create a TextLoader that allows sparse input.
var sparseLoader = mlContext.Data.CreateTextLoader(
columns: new[]
{
new TextLoader.Column("Features", DataKind.Single, 0, 9)
},
allowSparse: true
);
// Load the saved sparse data.
var sparseData = sparseLoader.Load(sparseDataFileName);
PrintRowCount(sparseData);
// Expected Output:
// 10
// Create a TextLoader without any column schema using TextLoader.Options.
// Since the sparse data file was saved with ML.NET, it has the schema
// enoded in its header that the loader can understand:
//
// #@ TextLoader{
// #@ sep=tab
// #@ col=Features:R4:0-9
// #@ }
//
// The schema syntax is unimportant since it is only used internally. In
// short, it tells the loader that the values are separated by tabs, and
// that columns 0-9 in the text file are to be read into one column named
// "Features" of type Single (internal type R4).
var options = new TextLoader.Options()
{
AllowSparse = true,
};
var dataSampleWithSchema = new MultiFileSource(sparseDataFileName);
var sparseLoaderWithSchema =
mlContext.Data.CreateTextLoader(options, dataSample: dataSampleWithSchema);
// Load the saved sparse data.
var sparseDataWithSchema = sparseLoaderWithSchema.Load(sparseDataFileName);
PrintRowCount(sparseDataWithSchema);
// Expected Output:
// 10
}
private static void PrintRowCount(IDataView idv)
{
// IDataView is lazy so we need to iterate through it
// to get the number of rows.
long rowCount = 0;
using (var cursor = idv.GetRowCursor(idv.Schema))
while (cursor.MoveNext())
rowCount++;
Console.WriteLine(rowCount);
}
private class Data
{
[LoadColumn(0, 9)]
public float[] Features { get; set; }
}
}
}