NormalizationCatalog.NormalizeMeanVariance Metoda
Definicja
Ważne
Niektóre informacje odnoszą się do produktu w wersji wstępnej, który może zostać znacząco zmodyfikowany przed wydaniem. Firma Microsoft nie udziela żadnych gwarancji, jawnych lub domniemanych, w odniesieniu do informacji podanych w tym miejscu.
Przeciążenia
NormalizeMeanVariance(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, Boolean) |
Utwórz element NormalizingEstimator, który normalizuje się na podstawie obliczonej średniej i wariancji danych. |
NormalizeMeanVariance(TransformsCatalog, String, String, Int64, Boolean, Boolean) |
Utwórz element NormalizingEstimator, który normalizuje się na podstawie obliczonej średniej i wariancji danych. |
NormalizeMeanVariance(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, Boolean)
Utwórz element NormalizingEstimator, który normalizuje się na podstawie obliczonej średniej i wariancji danych.
public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMeanVariance (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool fixZero = true, bool useCdf = false);
static member NormalizeMeanVariance : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeMeanVariance (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional useCdf As Boolean = false) As NormalizingEstimator
Parametry
- catalog
- TransformsCatalog
Wykaz przekształceń
- columns
- InputOutputColumnPair[]
Pary kolumn wejściowych i wyjściowych. Kolumny wejściowe muszą mieć typ SingleDouble danych lub znany wektor tych typów. Typ danych dla kolumny wyjściowej będzie taki sam jak skojarzona kolumna wejściowa.
- maximumExampleCount
- Int64
Maksymalna liczba przykładów używanych do trenowania normalizacji.
- fixZero
- Boolean
Czy mapować zero na zero, zachowując rozrzedanie.
- useCdf
- Boolean
Czy używać usługi CDF jako danych wyjściowych.
Zwraca
Dotyczy
NormalizeMeanVariance(TransformsCatalog, String, String, Int64, Boolean, Boolean)
Utwórz element NormalizingEstimator, który normalizuje się na podstawie obliczonej średniej i wariancji danych.
public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMeanVariance (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool fixZero = true, bool useCdf = false);
static member NormalizeMeanVariance : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeMeanVariance (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true, Optional useCdf As Boolean = false) As NormalizingEstimator
Parametry
- catalog
- TransformsCatalog
Wykaz przekształceń
- outputColumnName
- String
Nazwa kolumny wynikającej z przekształcenia inputColumnName
elementu .
Typ danych w tej kolumnie jest taki sam jak kolumna wejściowa.
- inputColumnName
- String
Nazwa kolumny do przekształcenia. Jeśli jest ustawiona null
wartość , wartość outputColumnName
elementu będzie używana jako źródło.
Typ danych w tej kolumnie powinien mieć Singlewartość , Double lub znany wektor tych typów.
- maximumExampleCount
- Int64
Maksymalna liczba przykładów używanych do trenowania normalizacji.
- fixZero
- Boolean
Czy mapować zero na zero, zachowując rozrzedanie.
- useCdf
- Boolean
Czy używać usługi CDF jako danych wyjściowych.
Zwraca
Przykłady
using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;
namespace Samples.Dynamic
{
public class NormalizeMeanVariance
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 1, 1, 3, 0} },
new DataPoint(){ Features = new float[4] { 2, 2, 2, 0} },
new DataPoint(){ Features = new float[4] { 0, 0, 1, 0} },
new DataPoint(){ Features = new float[4] {-1,-1,-1, 1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
// NormalizeMeanVariance normalizes the data based on the computed mean
// and variance of the data. Uses Cumulative distribution function as
// output.
var normalize = mlContext.Transforms.NormalizeMeanVariance("Features",
useCdf: true);
// NormalizeMeanVariance normalizes the data based on the computed mean
// and variance of the data.
var normalizeNoCdf = mlContext.Transforms.NormalizeMeanVariance(
"Features", useCdf: false);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var normalizeTransform = normalize.Fit(data);
var transformedData = normalizeTransform.Transform(data);
var normalizeNoCdfTransform = normalizeNoCdf.Fit(data);
var noCdfData = normalizeNoCdfTransform.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 0.6726, 0.6726, 0.8816, 0.2819
// 0.9101, 0.9101, 0.6939, 0.2819
// 0.3274, 0.3274, 0.4329, 0.2819
// 0.0899, 0.0899, 0.0641, 0.9584
var columnFixZero = noCdfData.GetColumn<float[]>("Features").ToArray();
foreach (var row in columnFixZero)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 0.8165, 0.8165, 1.5492, 0.0000
// 1.6330, 1.6330, 1.0328, 0.0000
// 0.0000, 0.0000, 0.5164, 0.0000
// -0.8165,-0.8165,-0.5164, 2.0000
// Let's get transformation parameters. Since we work with only one
// column we need to pass 0 as parameter for
// GetNormalizerModelParameters. If we have multiple columns
// transformations we need to pass index of InputOutputColumnPair.
var transformParams = normalizeTransform
.GetNormalizerModelParameters(0) as CdfNormalizerModelParameters<
ImmutableArray<float>>;
Console.WriteLine($"The 1-index value in resulting array would " +
$"be produce by:");
Console.WriteLine(" y = 0.5* (1 + ERF((x- " + transformParams.Mean[1] +
") / (" + transformParams.StandardDeviation[1] + " * sqrt(2)))");
// ERF is https://en.wikipedia.org/wiki/Error_function.
// Expected output:
// The 1-index value in resulting array would be produce by:
// y = 0.5 * (1 + ERF((x - 0.5) / (1.118034 * sqrt(2)))
var noCdfParams = normalizeNoCdfTransform
.GetNormalizerModelParameters(0) as
AffineNormalizerModelParameters<ImmutableArray<float>>;
var offset = noCdfParams.Offset.Length == 0 ? 0 : noCdfParams.Offset[1];
var scale = noCdfParams.Scale[1];
Console.WriteLine($"Values for slot 1 would be transformed by " +
$"applying y = (x - ({offset})) * {scale}");
// Expected output:
// The 1-index value in resulting array would be produce by: y = (x - (0)) * 0.8164966
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
}
}
}