Udostępnij za pośrednictwem


NormalizationCatalog.NormalizeMinMax Metoda

Definicja

Przeciążenia

NormalizeMinMax(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean)

Utwórz element NormalizingEstimator, który normalizuje się na podstawie obserwowanych wartości minimalnych i maksymalnych danych.

NormalizeMinMax(TransformsCatalog, String, String, Int64, Boolean)

Utwórz element NormalizingEstimator, który normalizuje się na podstawie obserwowanych wartości minimalnych i maksymalnych danych.

NormalizeMinMax(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean)

Utwórz element NormalizingEstimator, który normalizuje się na podstawie obserwowanych wartości minimalnych i maksymalnych danych.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMinMax (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool fixZero = true);
static member NormalizeMinMax : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeMinMax (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true) As NormalizingEstimator

Parametry

catalog
TransformsCatalog

Wykaz przekształceń

columns
InputOutputColumnPair[]

Pary kolumn wejściowych i wyjściowych. Kolumny wejściowe muszą mieć typ SingleDouble danych lub znany wektor tych typów. Typ danych dla kolumny wyjściowej będzie taki sam jak skojarzona kolumna wejściowa.

maximumExampleCount
Int64

Maksymalna liczba przykładów używanych do trenowania normalizacji.

fixZero
Boolean

Czy mapować zero na zero, zachowując rozrzedanie.

Zwraca

Przykłady

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    class NormalizeMinMaxMulticolumn
    {
        public static void Example()
        {
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint()
                {
                    Features = new float[4] { 1, 1, 3, 0 },
                    Features2 = new float[3] { 1, 2, 3 }
                },
                new DataPoint()
                {
                    Features = new float[4] { 2, 2, 2, 0 },
                    Features2 = new float[3] { 3, 4, 5 }
                },
                new DataPoint()
                {
                    Features = new float[4] { 0, 0, 1, 0 },
                    Features2 = new float[3] { 6, 7, 8 }
                },
                new DataPoint()
                {
                    Features = new float[4] {-1,-1,-1, 1 },
                    Features2 = new float[3] { 9, 0, 4 }
                }
            };

            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);

            var columnPair = new[]
            {
                new InputOutputColumnPair("Features"),
                new InputOutputColumnPair("Features2")
            };

            // NormalizeMinMax normalize rows by finding min and max values in each
            // row slot and setting projection of min value to 0 and max to 1 and
            // everything else to values in between.
            var normalize = mlContext.Transforms.NormalizeMinMax(columnPair,
                fixZero: false);

            // Normalize rows by finding min and max values in each row slot, but
            // make sure zero values remain zero after normalization. Helps
            // preserve sparsity. That is, to help maintain very little non-zero elements.
            var normalizeFixZero = mlContext.Transforms.NormalizeMinMax(columnPair,
                fixZero: true);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
            var fixZeroData = normalizeFixZeroTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            var column2 = transformedData.GetColumn<float[]>("Features2").ToArray();

            for (int i = 0; i < column.Length; i++)
                Console.WriteLine(string.Join(", ", column[i].Select(x => x
                .ToString("f4"))) + "\t\t" +
                string.Join(", ", column2[i].Select(x => x.ToString("f4"))));

            // Expected output:
            // Features                                Features2  
            // 0.6667, 0.6667, 1.0000, 0.0000          0.0000, 0.2857, 0.0000
            // 1.0000, 1.0000, 0.7500, 0.0000          0.2500, 0.5714, 0.4000
            // 0.3333, 0.3333, 0.5000, 0.0000          0.6250, 1.0000, 1.0000
            // 0.0000, 0.0000, 0.0000, 1.0000          1.0000, 0.0000, 0.2000

            var columnFixZero = fixZeroData.GetColumn<float[]>("Features").ToArray();
            var column2FixZero = fixZeroData.GetColumn<float[]>("Features2").ToArray();

            Console.WriteLine(Environment.NewLine);

            for (int i = 0; i < column.Length; i++)
                Console.WriteLine(string.Join(", ", columnFixZero[i].Select(x => x
                .ToString("f4"))) + "\t\t" +
                string.Join(", ", column2FixZero[i].Select(x => x.ToString("f4"))));

            // Expected output:
            // Features                                Features2  
            // 0.5000, 0.5000, 1.0000, 0.0000          0.1111, 0.2857, 0.3750
            // 1.0000, 1.0000, 0.6667, 0.0000          0.3333, 0.5714, 0.6250
            // 0.0000, 0.0000, 0.3333, 0.0000          0.6667, 1.0000, 1.0000
            // -0.5000, -0.5000, -0.3333, 1.0000       1.0000, 0.0000, 0.5000

            // Get transformation parameters. Since we have multiple columns
            // we need to pass index of InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as AffineNormalizerModelParameters<ImmutableArray<float>>;

            var transformParams2 = normalizeTransform.GetNormalizerModelParameters(1)
                as AffineNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine(Environment.NewLine);

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produced by:");

            Console.WriteLine(" y = (x - (" + (transformParams.Offset.Length == 0 ?
                0 : transformParams.Offset[1]) + ")) * " + transformParams
                .Scale[1]);

            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (x - (-1)) * 0.3333333
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }

            [VectorType(3)]
            public float[] Features2 { get; set; }
        }
    }
}

Dotyczy

NormalizeMinMax(TransformsCatalog, String, String, Int64, Boolean)

Utwórz element NormalizingEstimator, który normalizuje się na podstawie obserwowanych wartości minimalnych i maksymalnych danych.

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeMinMax (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool fixZero = true);
static member NormalizeMinMax : Microsoft.ML.TransformsCatalog * string * string * int64 * bool -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeMinMax (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional fixZero As Boolean = true) As NormalizingEstimator

Parametry

catalog
TransformsCatalog

Wykaz przekształceń

outputColumnName
String

Nazwa kolumny wynikającej z przekształcenia inputColumnNameelementu . Typ danych w tej kolumnie jest taki sam jak kolumna wejściowa.

inputColumnName
String

Nazwa kolumny do przekształcenia. Jeśli jest ustawiona nullwartość , wartość outputColumnName elementu będzie używana jako źródło. Typ danych w tej kolumnie powinien mieć Singlewartość , Double lub znany wektor tych typów.

maximumExampleCount
Int64

Maksymalna liczba przykładów używanych do trenowania normalizacji.

fixZero
Boolean

Czy mapować zero na zero, zachowując rozrzedanie.

Zwraca

Przykłady

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeMinMax
    {
        public static void Example()
        {
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 1, 1, 3, 0} },
                new DataPoint(){ Features = new float[4] { 2, 2, 2, 0} },
                new DataPoint(){ Features = new float[4] { 0, 0, 1, 0} },
                new DataPoint(){ Features = new float[4] {-1,-1,-1, 1} }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeMinMax normalize rows by finding min and max values in each
            // row slot and setting projection of min value to 0 and max to 1 and
            // everything else to values in between.
            var normalize = mlContext.Transforms.NormalizeMinMax("Features",
                fixZero: false);

            // Normalize rows by finding min and max values in each row slot, but
            // make sure zero values remain zero after normalization. Helps
            // preserve sparsity. That is, to help maintain very little non-zero elements.
            var normalizeFixZero = mlContext.Transforms.NormalizeMinMax("Features",
                fixZero: true);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
            var fixZeroData = normalizeFixZeroTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  0.6667, 0.6667, 1.0000, 0.0000
            //  1.0000, 1.0000, 0.7500, 0.0000
            //  0.3333, 0.3333, 0.5000, 0.0000
            //  0.0000, 0.0000, 0.0000, 1.0000

            var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
                .ToArray();

            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  0.5000, 0.5000, 1.0000, 0.0000
            //  1.0000, 1.0000, 0.6667, 0.0000
            //  0.0000, 0.0000, 0.3333, 0.0000
            // -0.5000,-0.5000,-0.3333, 1.0000

            // Get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters. If we have multiple columns
            // transformations we need to pass index of InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as AffineNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produced by:");

            Console.WriteLine(" y = (x - (" + (transformParams.Offset.Length == 0 ?
                0 : transformParams.Offset[1]) + ")) * " + transformParams
                .Scale[1]);
            // Expected output:
            //  The 1-index value in resulting array would be produce by: 
            //  y = (x - (-1)) * 0.3333333
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }
        }
    }
}

Dotyczy