Udostępnij za pośrednictwem


NormalizationCatalog.NormalizeRobustScaling Metoda

Definicja

Przeciążenia

NormalizeRobustScaling(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, UInt32, UInt32)

Utwórz obiekt NormalizingEstimator, który normalizuje dane przy użyciu statystyk niezawodnych dla wartości odstających przez wyśrodkowanie danych około 0 (usunięcie mediany) i skaluje dane zgodnie z zakresem kwantylu (domyślnie do zakresu interquartile).

NormalizeRobustScaling(TransformsCatalog, String, String, Int64, Boolean, UInt32, UInt32)

Utwórz obiekt NormalizingEstimator, który normalizuje dane przy użyciu statystyk niezawodnych dla wartości odstających przez wyśrodkowanie danych około 0 (usunięcie mediany) i skaluje dane zgodnie z zakresem kwantylu (domyślnie do zakresu interquartile).

NormalizeRobustScaling(TransformsCatalog, InputOutputColumnPair[], Int64, Boolean, UInt32, UInt32)

Utwórz obiekt NormalizingEstimator, który normalizuje dane przy użyciu statystyk niezawodnych dla wartości odstających przez wyśrodkowanie danych około 0 (usunięcie mediany) i skaluje dane zgodnie z zakresem kwantylu (domyślnie do zakresu interquartile).

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);
static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, columns As InputOutputColumnPair(), Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator

Parametry

catalog
TransformsCatalog

Wykaz przekształceń

columns
InputOutputColumnPair[]

Pary kolumn wejściowych i wyjściowych. Kolumny wejściowe muszą być typu Singledanych lub Double znanym wektorem tych typów. Typ danych dla kolumny wyjściowej będzie taki sam jak skojarzona kolumna wejściowa.

maximumExampleCount
Int64

Maksymalna liczba przykładów używanych do trenowania normalizacji.

centerData
Boolean

Określa, czy wyśrodkować dane około 0, należy usunąć medianę. Wartość domyślna to true.

quantileMin
UInt32

Min kwantylu używany do skalowania danych. Wartość domyślna to 25.

quantileMax
UInt32

Maksymalna wartość kwantylu używana do skalowania danych. Wartość domyślna to 75.

Zwraca

Przykłady

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeBinningMulticolumn
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
                    Features2 = 1 },

                new DataPoint(){ Features = new float[4] { 6, 2, 2, 0},
                    Features2 = 4 },

                new DataPoint(){ Features = new float[4] { 4, 0, 1, 0},
                    Features2 = 1 },

                new DataPoint(){ Features = new float[4] { 2,-1,-1, 1},
                    Features2 = 2 }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // NormalizeBinning normalizes the data by constructing equidensity bins
            // and produce output based on to which bin the original value belongs.
            var normalize = mlContext.Transforms.NormalizeBinning(new[]{
                new InputOutputColumnPair("Features"),
                new InputOutputColumnPair("Features2"),
                },
                maximumBinCount: 4, fixZero: false);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            var column2 = transformedData.GetColumn<float>("Features2").ToArray();

            for (int i = 0; i < column.Length; i++)
                Console.WriteLine(string.Join(", ", column[i].Select(x => x
                .ToString("f4"))) + "\t\t" + column2[i]);
            // Expected output:
            //
            //  Features                            Feature2
            //  1.0000, 0.6667, 1.0000, 0.0000          0
            //  0.6667, 1.0000, 0.6667, 0.0000          1
            //  0.3333, 0.3333, 0.3333, 0.0000          0
            //  0.0000, 0.0000, 0.0000, 1.0000          0.5
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }

            public float Features2 { get; set; }
        }
    }
}

Dotyczy

NormalizeRobustScaling(TransformsCatalog, String, String, Int64, Boolean, UInt32, UInt32)

Utwórz obiekt NormalizingEstimator, który normalizuje dane przy użyciu statystyk niezawodnych dla wartości odstających przez wyśrodkowanie danych około 0 (usunięcie mediany) i skaluje dane zgodnie z zakresem kwantylu (domyślnie do zakresu interquartile).

public static Microsoft.ML.Transforms.NormalizingEstimator NormalizeRobustScaling (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, long maximumExampleCount = 1000000000, bool centerData = true, uint quantileMin = 25, uint quantileMax = 75);
static member NormalizeRobustScaling : Microsoft.ML.TransformsCatalog * string * string * int64 * bool * uint32 * uint32 -> Microsoft.ML.Transforms.NormalizingEstimator
<Extension()>
Public Function NormalizeRobustScaling (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional maximumExampleCount As Long = 1000000000, Optional centerData As Boolean = true, Optional quantileMin As UInteger = 25, Optional quantileMax As UInteger = 75) As NormalizingEstimator

Parametry

catalog
TransformsCatalog

Wykaz przekształceń

outputColumnName
String

Nazwa kolumny wynikającej z przekształcenia elementu inputColumnName. Typ danych w tej kolumnie jest taki sam jak kolumna wejściowa.

inputColumnName
String

Nazwa kolumny do przekształcenia. W przypadku ustawienia wartości nullwartość parametru outputColumnName będzie używana jako źródło. Typ danych w tej kolumnie powinien być Singlelub Double znanym wektorem tego typu.

maximumExampleCount
Int64

Maksymalna liczba przykładów używanych do trenowania normalizacji.

centerData
Boolean

Czy należy wyśrodkować dane około 0 przez usunięcie mediany. Wartość domyślna to true.

quantileMin
UInt32

Min kwantylu używany do skalowania danych. Wartość domyślna to 25.

quantileMax
UInt32

Maksymalna wartość kwantylu używana do skalowania danych. Wartość domyślna to 75.

Zwraca

Przykłady

using System;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using static Microsoft.ML.Transforms.NormalizingTransformer;

namespace Samples.Dynamic
{
    public class NormalizeSupervisedBinning
    {
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();
            var samples = new List<DataPoint>()
            {
                new DataPoint(){ Features = new float[4] { 8, 1, 3, 0},
                    Bin ="Bin1" },

                new DataPoint(){ Features = new float[4] { 6, 2, 2, 1},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 5, 3, 0, 2},
                    Bin ="Bin2" },

                new DataPoint(){ Features = new float[4] { 4,-8, 1, 3},
                    Bin ="Bin3" },

                new DataPoint(){ Features = new float[4] { 2,-5,-1, 4},
                    Bin ="Bin3" }
            };
            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var data = mlContext.Data.LoadFromEnumerable(samples);
            // Let's transform "Bin" column from string to key.
            data = mlContext.Transforms.Conversion.MapValueToKey("Bin").Fit(data)
                .Transform(data);
            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong.
            var normalize = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: false);

            // NormalizeSupervisedBinning normalizes the data by constructing bins
            // based on correlation with the label column and produce output based
            // on to which bin original value belong but make sure zero values would
            // remain zero after normalization. Helps preserve sparsity.
            var normalizeFixZero = mlContext.Transforms.NormalizeSupervisedBinning(
                "Features", labelColumnName: "Bin", mininimumExamplesPerBin: 1,
                fixZero: true);

            // Now we can transform the data and look at the output to confirm the
            // behavior of the estimator. This operation doesn't actually evaluate
            // data until we read the data below.
            var normalizeTransform = normalize.Fit(data);
            var transformedData = normalizeTransform.Transform(data);
            var normalizeFixZeroTransform = normalizeFixZero.Fit(data);
            var fixZeroData = normalizeFixZeroTransform.Transform(data);
            var column = transformedData.GetColumn<float[]>("Features").ToArray();
            foreach (var row in column)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.5000, 1.0000, 0.0000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.5000, 1.0000, 0.0000, 0.5000
            //  0.0000, 0.0000, 0.0000, 1.0000
            //  0.0000, 0.0000, 0.0000, 1.0000

            var columnFixZero = fixZeroData.GetColumn<float[]>("Features")
                .ToArray();

            foreach (var row in columnFixZero)
                Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
                    "f4"))));
            // Expected output:
            //  1.0000, 0.0000, 1.0000, 0.0000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.5000, 0.5000, 0.0000, 0.5000
            //  0.0000,-0.5000, 0.0000, 1.0000
            //  0.0000,-0.5000, 0.0000, 1.0000

            // Let's get transformation parameters. Since we work with only one
            // column we need to pass 0 as parameter for
            // GetNormalizerModelParameters.
            // If we have multiple columns transformations we need to pass index of
            // InputOutputColumnPair.
            var transformParams = normalizeTransform.GetNormalizerModelParameters(0)
                as BinNormalizerModelParameters<ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine("y = (Index(x) / " + transformParams.Density[0] +
                ") - " + (transformParams.Offset.Length == 0 ? 0 : transformParams
                .Offset[0]));

            Console.WriteLine("Where Index(x) is the index of the bin to which " +
                "x belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                transformParams.UpperBounds[0]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: 4.5 7 ∞

            var fixZeroParams = normalizeFixZeroTransform
                .GetNormalizerModelParameters(0) as BinNormalizerModelParameters<
                ImmutableArray<float>>;

            Console.WriteLine($"The 1-index value in resulting array would be " +
                $"produce by:");

            Console.WriteLine(" y = (Index(x) / " + fixZeroParams.Density[1] +
                ") - " + (fixZeroParams.Offset.Length == 0 ? 0 : fixZeroParams
                .Offset[1]));

            Console.WriteLine("Where Index(x) is the index of the bin to which x " +
                "belongs");

            Console.WriteLine("Bins upper borders are: " + string.Join(" ",
                fixZeroParams.UpperBounds[1]));
            // Expected output:
            //  The 1-index value in resulting array would be produce by:
            //  y = (Index(x) / 2) - 0.5
            //  Where Index(x) is the index of the bin to which x belongs
            //  Bins upper bounds are: -2 1.5 ∞
        }

        private class DataPoint
        {
            [VectorType(4)]
            public float[] Features { get; set; }

            public string Bin { get; set; }
        }
    }
}

Dotyczy