TimeSeriesCatalog.LocalizeRootCause Metoda
Definicja
Ważne
Niektóre informacje odnoszą się do produktu w wersji wstępnej, który może zostać znacząco zmodyfikowany przed wydaniem. Firma Microsoft nie udziela żadnych gwarancji, jawnych lub domniemanych, w odniesieniu do informacji podanych w tym miejscu.
Utwórz RootCauseelement , który lokalizuje główne przyczyny przy użyciu algorytmu drzewa decyzyjnego.
public static Microsoft.ML.TimeSeries.RootCause LocalizeRootCause (this Microsoft.ML.AnomalyDetectionCatalog catalog, Microsoft.ML.TimeSeries.RootCauseLocalizationInput src, double beta = 0.3, double rootCauseThreshold = 0.95);
static member LocalizeRootCause : Microsoft.ML.AnomalyDetectionCatalog * Microsoft.ML.TimeSeries.RootCauseLocalizationInput * double * double -> Microsoft.ML.TimeSeries.RootCause
<Extension()>
Public Function LocalizeRootCause (catalog As AnomalyDetectionCatalog, src As RootCauseLocalizationInput, Optional beta As Double = 0.3, Optional rootCauseThreshold As Double = 0.95) As RootCause
Parametry
- catalog
- AnomalyDetectionCatalog
Wykaz wykrywania anomalii.
Dane wejściowe głównej przyczyny. Dane są wystąpieniem klasy RootCauseLocalizationInput.
- beta
- Double
Beta to parametr wagi, który należy wybrać przez użytkownika. Jest on używany, gdy wynik jest obliczany dla każdego elementu głównej przyczyny. Zakres beta powinien znajdować się w [0,1]. W przypadku większej wersji beta główne elementy przyczyn, które mają dużą różnicę między wartością a oczekiwaną wartością, otrzymają wysoką ocenę. W przypadku małej wersji beta główne elementy powodujące wysoką zmianę względną otrzymają niski wynik.
- rootCauseThreshold
- Double
Próg określający, czy punkt powinien być główną przyczyną. Zakres tego progu powinien wynosić [0,1]. Jeśli różnica punktu jest równa lub większa niż rootCauseThreshold pomnożona przez różnicę punktu wymiaru anomalii, ten punkt jest traktowany jako główna przyczyna. Inny próg spowoduje wyświetlenie różnych wyników. Użytkownicy mogą wybrać różnicę zgodnie z danymi i wymaganiami.
Zwraca
Przykłady
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.TimeSeries;
namespace Samples.Dynamic
{
public static class LocalizeRootCause
{
// In the root cause detection input, this string identifies an aggregation as opposed to a dimension value"
private static string AGG_SYMBOL = "##SUM##";
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Create an root cause localization input instance.
DateTime timestamp = GetTimestamp();
var data = new RootCauseLocalizationInput(timestamp, GetAnomalyDimension(), new List<MetricSlice>() { new MetricSlice(timestamp, GetPoints()) }, AggregateType.Sum, AGG_SYMBOL);
// Get the root cause localization result.
RootCause prediction = mlContext.AnomalyDetection.LocalizeRootCause(data);
// Print the localization result.
int count = 0;
foreach (RootCauseItem item in prediction.Items)
{
count++;
Console.WriteLine($"Root cause item #{count} ...");
Console.WriteLine($"Score: {item.Score}, Path: {String.Join(" ", item.Path)}, Direction: {item.Direction}, Dimension:{String.Join(" ", item.Dimension)}");
}
//Item #1 ...
//Score: 0.26670448876705927, Path: DataCenter, Direction: Up, Dimension:[Country, UK] [DeviceType, ##SUM##] [DataCenter, DC1]
}
private static List<TimeSeriesPoint> GetPoints()
{
List<TimeSeriesPoint> points = new List<TimeSeriesPoint>();
Dictionary<string, Object> dic1 = new Dictionary<string, Object>();
dic1.Add("Country", "UK");
dic1.Add("DeviceType", "Laptop");
dic1.Add("DataCenter", "DC1");
points.Add(new TimeSeriesPoint(200, 100, true, dic1));
Dictionary<string, Object> dic2 = new Dictionary<string, Object>();
dic2.Add("Country", "UK");
dic2.Add("DeviceType", "Mobile");
dic2.Add("DataCenter", "DC1");
points.Add(new TimeSeriesPoint(1000, 100, true, dic2));
Dictionary<string, Object> dic3 = new Dictionary<string, Object>();
dic3.Add("Country", "UK");
dic3.Add("DeviceType", AGG_SYMBOL);
dic3.Add("DataCenter", "DC1");
points.Add(new TimeSeriesPoint(1200, 200, true, dic3));
Dictionary<string, Object> dic4 = new Dictionary<string, Object>();
dic4.Add("Country", "UK");
dic4.Add("DeviceType", "Laptop");
dic4.Add("DataCenter", "DC2");
points.Add(new TimeSeriesPoint(100, 100, false, dic4));
Dictionary<string, Object> dic5 = new Dictionary<string, Object>();
dic5.Add("Country", "UK");
dic5.Add("DeviceType", "Mobile");
dic5.Add("DataCenter", "DC2");
points.Add(new TimeSeriesPoint(200, 200, false, dic5));
Dictionary<string, Object> dic6 = new Dictionary<string, Object>();
dic6.Add("Country", "UK");
dic6.Add("DeviceType", AGG_SYMBOL);
dic6.Add("DataCenter", "DC2");
points.Add(new TimeSeriesPoint(300, 300, false, dic6));
Dictionary<string, Object> dic7 = new Dictionary<string, Object>();
dic7.Add("Country", "UK");
dic7.Add("DeviceType", AGG_SYMBOL);
dic7.Add("DataCenter", AGG_SYMBOL);
points.Add(new TimeSeriesPoint(1500, 500, true, dic7));
Dictionary<string, Object> dic8 = new Dictionary<string, Object>();
dic8.Add("Country", "UK");
dic8.Add("DeviceType", "Laptop");
dic8.Add("DataCenter", AGG_SYMBOL);
points.Add(new TimeSeriesPoint(300, 200, true, dic8));
Dictionary<string, Object> dic9 = new Dictionary<string, Object>();
dic9.Add("Country", "UK");
dic9.Add("DeviceType", "Mobile");
dic9.Add("DataCenter", AGG_SYMBOL);
points.Add(new TimeSeriesPoint(1200, 300, true, dic9));
return points;
}
private static Dictionary<string, Object> GetAnomalyDimension()
{
Dictionary<string, Object> dim = new Dictionary<string, Object>();
dim.Add("Country", "UK");
dim.Add("DeviceType", AGG_SYMBOL);
dim.Add("DataCenter", AGG_SYMBOL);
return dim;
}
private static DateTime GetTimestamp()
{
return new DateTime(2020, 3, 23, 0, 0, 0);
}
}
}