Observação
O acesso a essa página exige autorização. Você pode tentar entrar ou alterar diretórios.
O acesso a essa página exige autorização. Você pode tentar alterar os diretórios.
Observação
Este início rápido aborda apenas a detecção de PII em documentos. Para saber como detectar PII em conversas, confira Como detectar e redigir PII em conversas.
Documentação de referência | Mais amostras | Pacote (NuGet) | Código-fonte da biblioteca
Use este guia de início rápido para criar um aplicativo de detecção de Informações de Identificação Pessoal (PII) com a biblioteca cliente para .NET. No exemplo a seguir, você vai criar um aplicativo em C# que pode identificar informações confidenciais reconhecidas no texto.
Dica
Você pode usar o Azure AI Foundry para experimentar a sumarização sem precisar escrever código.
Pré-requisitos
- Assinatura do Azure – Criar uma gratuitamente
- Depois de ter sua assinatura do Azure, crie um recurso do AI Foundry.
- O IDE do Visual Studio
Configurando
Criar variáveis de ambiente
Seu aplicativo deve ser autenticado para enviar solicitações de API. Para produção, use uma maneira segura de armazenar e acessar suas credenciais. Neste exemplo, você gravará suas credenciais em variáveis de ambiente no computador local que está executando o aplicativo.
Para definir a variável de ambiente da chave de recurso de linguagem, abra uma janela do console e siga as instruções para o seu sistema operacional e ambiente de desenvolvimento.
- Para definir a variável de ambiente
LANGUAGE_KEY
, substituayour-key
por uma das chaves do recurso. - Para definir a variável de ambiente
LANGUAGE_ENDPOINT
, substituayour-endpoint
pelo ponto de extremidade do recurso.
Importante
Recomendamos a autenticação do Microsoft Entra ID com identidades gerenciadas para recursos do Azure a fim de evitar o armazenamento de credenciais com seus aplicativos executados na nuvem.
Use as chaves de API com cuidado. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente. Se estiver usando chaves de API, armazene-as com segurança no Azure Key Vault, gire as chaves regularmente e restrinja o acesso ao Azure Key Vault usando controle de acesso baseado em função e restrições de acesso à rede. Para obter mais informações sobre como usar chaves de API com segurança em seus aplicativos, consulte Chaves de API com o Azure Key Vault.
Para obter mais informações sobre a segurança dos serviços de IA, veja Autenticar solicitações para serviços de IA do Azure.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Observação
Se for necessário acessar somente as variáveis de ambiente no console em execução no momento, você pode definir a variável de ambiente com set
em vez de setx
.
Depois de adicionar as variáveis de ambiente, talvez seja necessário reiniciar todos os programas em execução que precisarão ler as variáveis de ambiente, incluindo a janela do console. Por exemplo, se estiver usando o Visual Studio como seu editor, reinicie-o antes de executar o exemplo.
Criar um aplicativo .NET Core
Usando o IDE do Visual Studio, crie um aplicativo de console do .NET Core. Isso criará um projeto "Olá, Mundo" com um arquivo de origem C#: program.cs.
Instale a biblioteca de cliente clicando com o botão direito do mouse na solução no Gerenciador de Soluções e selecionando Gerenciar Pacotes do NuGet. No gerenciador de pacotes que é aberto, selecione Procurar e pesquise por Azure.AI.TextAnalytics
. Selecione a versão 5.2.0
e, em seguida, Instalar. Você também pode usar o Console do Gerenciador de Pacotes.
Exemplo de código
Copie o seguinte código para o seu arquivo program.cs e execute o código.
using Azure;
using System;
using Azure.AI.TextAnalytics;
namespace Example
{
class Program
{
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
static string languageKey = Environment.GetEnvironmentVariable("LANGUAGE_KEY");
static string languageEndpoint = Environment.GetEnvironmentVariable("LANGUAGE_ENDPOINT");
private static readonly AzureKeyCredential credentials = new AzureKeyCredential(languageKey);
private static readonly Uri endpoint = new Uri(languageEndpoint);
// Example method for detecting sensitive information (PII) from text
static void RecognizePIIExample(TextAnalyticsClient client)
{
string document = "Call our office at 312-555-1234, or send an email to support@contoso.com.";
PiiEntityCollection entities = client.RecognizePiiEntities(document).Value;
Console.WriteLine($"Redacted Text: {entities.RedactedText}");
if (entities.Count > 0)
{
Console.WriteLine($"Recognized {entities.Count} PII entit{(entities.Count > 1 ? "ies" : "y")}:");
foreach (PiiEntity entity in entities)
{
Console.WriteLine($"Text: {entity.Text}, Category: {entity.Category}, SubCategory: {entity.SubCategory}, Confidence score: {entity.ConfidenceScore}");
}
}
else
{
Console.WriteLine("No entities were found.");
}
}
static void Main(string[] args)
{
var client = new TextAnalyticsClient(endpoint, credentials);
RecognizePIIExample(client);
Console.Write("Press any key to exit.");
Console.ReadKey();
}
}
}
Saída
Redacted Text: Call our office at ************, or send an email to *******************.
Recognized 2 PII entities:
Text: 312-555-1234, Category: PhoneNumber, SubCategory: , Confidence score: 0.8
Text: support@contoso.com, Category: Email, SubCategory: , Confidence score: 0.8
Documentação de referência | Mais amostras | Pacote (Maven) | Código-fonte da biblioteca
Use este início rápido para criar um aplicativo de detecção de Informações de Identificação Pessoal (PII) com a biblioteca cliente em Java. No exemplo a seguir, você vai criar um aplicativo Java que pode identificar informações confidenciais reconhecidas no texto.
Dica
Você pode usar o Azure AI Foundry para experimentar a sumarização sem precisar escrever código.
Pré-requisitos
- Assinatura do Azure – Criar uma gratuitamente
- Depois de ter sua assinatura do Azure, crie um recurso do AI Foundry.
- JDK (Java Development Kit) com a versão 8 ou superior
Configurando
Criar variáveis de ambiente
Seu aplicativo deve ser autenticado para enviar solicitações de API. Para produção, use uma maneira segura de armazenar e acessar suas credenciais. Neste exemplo, você gravará suas credenciais em variáveis de ambiente no computador local que está executando o aplicativo.
Para definir a variável de ambiente da chave de recurso de linguagem, abra uma janela do console e siga as instruções para o seu sistema operacional e ambiente de desenvolvimento.
- Para definir a variável de ambiente
LANGUAGE_KEY
, substituayour-key
por uma das chaves do recurso. - Para definir a variável de ambiente
LANGUAGE_ENDPOINT
, substituayour-endpoint
pelo ponto de extremidade do recurso.
Importante
Recomendamos a autenticação do Microsoft Entra ID com identidades gerenciadas para recursos do Azure a fim de evitar o armazenamento de credenciais com seus aplicativos executados na nuvem.
Use as chaves de API com cuidado. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente. Se estiver usando chaves de API, armazene-as com segurança no Azure Key Vault, gire as chaves regularmente e restrinja o acesso ao Azure Key Vault usando controle de acesso baseado em função e restrições de acesso à rede. Para obter mais informações sobre como usar chaves de API com segurança em seus aplicativos, consulte Chaves de API com o Azure Key Vault.
Para obter mais informações sobre a segurança dos serviços de IA, veja Autenticar solicitações para serviços de IA do Azure.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Observação
Se for necessário acessar somente as variáveis de ambiente no console em execução no momento, você pode definir a variável de ambiente com set
em vez de setx
.
Depois de adicionar as variáveis de ambiente, talvez seja necessário reiniciar todos os programas em execução que precisarão ler as variáveis de ambiente, incluindo a janela do console. Por exemplo, se estiver usando o Visual Studio como seu editor, reinicie-o antes de executar o exemplo.
Adicionar a biblioteca de clientes
Crie um projeto Maven no IDE ou no ambiente de desenvolvimento de sua preferência. Em seguida, adicione a dependência a seguir ao arquivo pom.xml do projeto. Você pode encontrar a sintaxe de implementação para outras ferramentas de build online.
<dependencies>
<dependency>
<groupId>com.azure</groupId>
<artifactId>azure-ai-textanalytics</artifactId>
<version>5.2.0</version>
</dependency>
</dependencies>
Exemplo de código
Crie um arquivo Java chamado Example.java
. Abra o arquivo e copie o código abaixo. Depois, execute o código.
import com.azure.core.credential.AzureKeyCredential;
import com.azure.ai.textanalytics.models.*;
import com.azure.ai.textanalytics.TextAnalyticsClientBuilder;
import com.azure.ai.textanalytics.TextAnalyticsClient;
public class Example {
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
private static String languageKey = System.getenv("LANGUAGE_KEY");
private static String languageEndpoint = System.getenv("LANGUAGE_ENDPOINT");
public static void main(String[] args) {
TextAnalyticsClient client = authenticateClient(languageKey, languageEndpoint);
recognizePiiEntitiesExample(client);
}
// Method to authenticate the client object with your key and endpoint
static TextAnalyticsClient authenticateClient(String key, String endpoint) {
return new TextAnalyticsClientBuilder()
.credential(new AzureKeyCredential(key))
.endpoint(endpoint)
.buildClient();
}
// Example method for detecting sensitive information (PII) from text
static void recognizePiiEntitiesExample(TextAnalyticsClient client)
{
// The text that need be analyzed.
String document = "My SSN is 859-98-0987";
PiiEntityCollection piiEntityCollection = client.recognizePiiEntities(document);
System.out.printf("Redacted Text: %s%n", piiEntityCollection.getRedactedText());
piiEntityCollection.forEach(entity -> System.out.printf(
"Recognized Personally Identifiable Information entity: %s, entity category: %s, entity subcategory: %s,"
+ " confidence score: %f.%n",
entity.getText(), entity.getCategory(), entity.getSubcategory(), entity.getConfidenceScore()));
}
}
Saída
Redacted Text: My SSN is ***********
Recognized Personally Identifiable Information entity: 859-98-0987, entity category: USSocialSecurityNumber, entity subcategory: null, confidence score: 0.650000.
Documentação de referência | Mais exemplos | Pacote (npm) | Código fonte da biblioteca
Use este guia rápido para criar um aplicativo de detecção de Informações de Identificação Pessoal (PII) com a biblioteca cliente para Node.js. No exemplo a seguir, você vai criar um aplicativo JavaScript que pode identificar informações confidenciais reconhecidas no texto.
Pré-requisitos
- Assinatura do Azure – Criar uma gratuitamente
- Depois de ter sua assinatura do Azure, crie um recurso do AI Foundry.
- Node.js v14 LTS ou posterior
Configurando
Criar variáveis de ambiente
Seu aplicativo deve ser autenticado para enviar solicitações de API. Para produção, use uma maneira segura de armazenar e acessar suas credenciais. Neste exemplo, você gravará suas credenciais em variáveis de ambiente no computador local que está executando o aplicativo.
Para definir a variável de ambiente da chave de recurso de linguagem, abra uma janela do console e siga as instruções para o seu sistema operacional e ambiente de desenvolvimento.
- Para definir a variável de ambiente
LANGUAGE_KEY
, substituayour-key
por uma das chaves do recurso. - Para definir a variável de ambiente
LANGUAGE_ENDPOINT
, substituayour-endpoint
pelo ponto de extremidade do recurso.
Importante
Recomendamos a autenticação do Microsoft Entra ID com identidades gerenciadas para recursos do Azure a fim de evitar o armazenamento de credenciais com seus aplicativos executados na nuvem.
Use as chaves de API com cuidado. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente. Se estiver usando chaves de API, armazene-as com segurança no Azure Key Vault, gire as chaves regularmente e restrinja o acesso ao Azure Key Vault usando controle de acesso baseado em função e restrições de acesso à rede. Para obter mais informações sobre como usar chaves de API com segurança em seus aplicativos, consulte Chaves de API com o Azure Key Vault.
Para obter mais informações sobre a segurança dos serviços de IA, veja Autenticar solicitações para serviços de IA do Azure.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Observação
Se for necessário acessar somente as variáveis de ambiente no console em execução no momento, você pode definir a variável de ambiente com set
em vez de setx
.
Depois de adicionar as variáveis de ambiente, talvez seja necessário reiniciar todos os programas em execução que precisarão ler as variáveis de ambiente, incluindo a janela do console. Por exemplo, se estiver usando o Visual Studio como seu editor, reinicie-o antes de executar o exemplo.
Criar um novo aplicativo do Node.js
Em uma janela de console (como cmd, PowerShell ou Bash), crie um novo diretório para seu aplicativo e navegue até ele.
mkdir myapp
cd myapp
Execute o comando npm init
para criar um aplicativo do Node com um arquivo package.json
.
npm init
Instalar a biblioteca de clientes
Instale o pacote npm:
npm install @azure/ai-text-analytics
Exemplo de código
Abra o arquivo e copie o código abaixo. Depois, execute o código.
"use strict";
const { TextAnalyticsClient, AzureKeyCredential } = require("@azure/ai-text-analytics");
// This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
const key = process.env.LANGUAGE_KEY;
const endpoint = process.env.LANGUAGE_ENDPOINT;
//an example document for pii recognition
const documents = [ "The employee's phone number is (555) 555-5555." ];
async function main() {
console.log(`PII recognition sample`);
const client = new TextAnalyticsClient(endpoint, new AzureKeyCredential(key));
const documents = ["My phone number is 555-555-5555"];
const [result] = await client.analyze("PiiEntityRecognition", documents, "en");
if (!result.error) {
console.log(`Redacted text: "${result.redactedText}"`);
console.log("Pii Entities: ");
for (const entity of result.entities) {
console.log(`\t- "${entity.text}" of type ${entity.category}`);
}
}
}
main().catch((err) => {
console.error("The sample encountered an error:", err);
});
Saída
PII recognition sample
Redacted text: "My phone number is ************"
Pii Entities:
- "555-555-5555" of type PhoneNumber
Documentação de referência | Mais amostras | Pacote (PyPi) | Código-fonte da biblioteca
Use este início rápido para criar um aplicativo de detecção de Informações de Identificação Pessoal (PII) com a biblioteca do cliente para Python. No exemplo a seguir, você criará um aplicativo Python que pode identificar informações confidenciais reconhecidas no texto.
Pré-requisitos
- Assinatura do Azure – Criar uma gratuitamente
- Depois de ter sua assinatura do Azure, crie um recurso do AI Foundry.
- Python 3.8 ou posterior
Configurando
Criar variáveis de ambiente
Seu aplicativo deve ser autenticado para enviar solicitações de API. Para produção, use uma maneira segura de armazenar e acessar suas credenciais. Neste exemplo, você gravará suas credenciais em variáveis de ambiente no computador local que está executando o aplicativo.
Para definir a variável de ambiente da chave de recurso de linguagem, abra uma janela do console e siga as instruções para o seu sistema operacional e ambiente de desenvolvimento.
- Para definir a variável de ambiente
LANGUAGE_KEY
, substituayour-key
por uma das chaves do recurso. - Para definir a variável de ambiente
LANGUAGE_ENDPOINT
, substituayour-endpoint
pelo ponto de extremidade do recurso.
Importante
Recomendamos a autenticação do Microsoft Entra ID com identidades gerenciadas para recursos do Azure a fim de evitar o armazenamento de credenciais com seus aplicativos executados na nuvem.
Use as chaves de API com cuidado. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente. Se estiver usando chaves de API, armazene-as com segurança no Azure Key Vault, gire as chaves regularmente e restrinja o acesso ao Azure Key Vault usando controle de acesso baseado em função e restrições de acesso à rede. Para obter mais informações sobre como usar chaves de API com segurança em seus aplicativos, consulte Chaves de API com o Azure Key Vault.
Para obter mais informações sobre a segurança dos serviços de IA, veja Autenticar solicitações para serviços de IA do Azure.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Observação
Se for necessário acessar somente as variáveis de ambiente no console em execução no momento, você pode definir a variável de ambiente com set
em vez de setx
.
Depois de adicionar as variáveis de ambiente, talvez seja necessário reiniciar todos os programas em execução que precisarão ler as variáveis de ambiente, incluindo a janela do console. Por exemplo, se estiver usando o Visual Studio como seu editor, reinicie-o antes de executar o exemplo.
Instalar a biblioteca de clientes
Depois de instalar o Python, você pode instalar a biblioteca de clientes com:
pip install azure-ai-textanalytics==5.2.0
Exemplo de código
Crie um novo arquivo Python e copie o código abaixo. Depois, execute o código.
# This example requires environment variables named "LANGUAGE_KEY" and "LANGUAGE_ENDPOINT"
language_key = os.environ.get('LANGUAGE_KEY')
language_endpoint = os.environ.get('LANGUAGE_ENDPOINT')
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential
# Authenticate the client using your key and endpoint
def authenticate_client():
ta_credential = AzureKeyCredential(language_key)
text_analytics_client = TextAnalyticsClient(
endpoint=language_endpoint,
credential=ta_credential)
return text_analytics_client
client = authenticate_client()
# Example method for detecting sensitive information (PII) from text
def pii_recognition_example(client):
documents = [
"The employee's SSN is 859-98-0987.",
"The employee's phone number is 555-555-5555."
]
response = client.recognize_pii_entities(documents, language="en")
result = [doc for doc in response if not doc.is_error]
for doc in result:
print("Redacted Text: {}".format(doc.redacted_text))
for entity in doc.entities:
print("Entity: {}".format(entity.text))
print("\tCategory: {}".format(entity.category))
print("\tConfidence Score: {}".format(entity.confidence_score))
print("\tOffset: {}".format(entity.offset))
print("\tLength: {}".format(entity.length))
pii_recognition_example(client)
Saída
Redacted Text: The ********'s SSN is ***********.
Entity: employee
Category: PersonType
Confidence Score: 0.97
Offset: 4
Length: 8
Entity: 859-98-0987
Category: USSocialSecurityNumber
Confidence Score: 0.65
Offset: 22
Length: 11
Redacted Text: The ********'s phone number is ************.
Entity: employee
Category: PersonType
Confidence Score: 0.96
Offset: 4
Length: 8
Entity: 555-555-5555
Category: PhoneNumber
Confidence Score: 0.8
Offset: 31
Length: 12
Use este início rápido para enviar solicitações de detecção de PII (Informações Pessoais Identificáveis) usando a API REST. No exemplo a seguir, você usará o cURL para identificar informações confidenciais reconhecidas no texto.
Pré-requisitos
- Assinatura do Azure – Criar uma gratuitamente
- Depois de ter sua assinatura do Azure, crie um recurso do AI Foundry.
Configurando
Criar variáveis de ambiente
Seu aplicativo deve ser autenticado para enviar solicitações de API. Para produção, use uma maneira segura de armazenar e acessar suas credenciais. Neste exemplo, você gravará suas credenciais em variáveis de ambiente no computador local que está executando o aplicativo.
Para definir a variável de ambiente da chave de recurso de linguagem, abra uma janela do console e siga as instruções para o seu sistema operacional e ambiente de desenvolvimento.
- Para definir a variável de ambiente
LANGUAGE_KEY
, substituayour-key
por uma das chaves do recurso. - Para definir a variável de ambiente
LANGUAGE_ENDPOINT
, substituayour-endpoint
pelo ponto de extremidade do recurso.
Importante
Recomendamos a autenticação do Microsoft Entra ID com identidades gerenciadas para recursos do Azure a fim de evitar o armazenamento de credenciais com seus aplicativos executados na nuvem.
Use as chaves de API com cuidado. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente. Se estiver usando chaves de API, armazene-as com segurança no Azure Key Vault, gire as chaves regularmente e restrinja o acesso ao Azure Key Vault usando controle de acesso baseado em função e restrições de acesso à rede. Para obter mais informações sobre como usar chaves de API com segurança em seus aplicativos, consulte Chaves de API com o Azure Key Vault.
Para obter mais informações sobre a segurança dos serviços de IA, veja Autenticar solicitações para serviços de IA do Azure.
setx LANGUAGE_KEY your-key
setx LANGUAGE_ENDPOINT your-endpoint
Observação
Se for necessário acessar somente as variáveis de ambiente no console em execução no momento, você pode definir a variável de ambiente com set
em vez de setx
.
Depois de adicionar as variáveis de ambiente, talvez seja necessário reiniciar todos os programas em execução que precisarão ler as variáveis de ambiente, incluindo a janela do console. Por exemplo, se estiver usando o Visual Studio como seu editor, reinicie-o antes de executar o exemplo.
Criar um arquivo JSON com o corpo da solicitação de exemplo
Em um editor de código, crie um arquivo chamado test_pii_payload.json
e copie o exemplo JSON a seguir. Esta solicitação de exemplo será enviada para a API na próxima etapa.
{
"kind": "PiiEntityRecognition",
"parameters": {
"modelVersion": "latest"
},
"analysisInput":{
"documents":[
{
"id":"1",
"language": "en",
"text": "Call our office at 312-555-1234, or send an email to support@contoso.com"
}
]
}
}
'
Salve test_pii_payload.json
em algum lugar no seu computador. Por exemplo, sua área de trabalho.
Enviar uma solicitação de API de detecção de informações de identificação pessoal (PII)
Use os comandos a seguir para enviar a solicitação de API usando o programa que você está usando. Copie o comando para o terminal e execute-o.
parâmetro | Descrição |
---|---|
-X POST <endpoint> |
Especifica o ponto de extremidade para acessar a API. |
-H Content-Type: application/json |
Tipo de conteúdo para enviar dados JSON. |
-H "Ocp-Apim-Subscription-Key:<key> |
Especifica a chave para acessar a API. |
-d <documents> |
JSON contendo os documentos que você deseja enviar. |
Substitua C:\Users\<myaccount>\Desktop\test_pii_payload.json
pela localização do arquivo da solicitação JSON de exemplo criado na etapa anterior.
Prompt de comando
curl -X POST "%LANGUAGE_ENDPOINT%/language/:analyze-text?api-version=2022-05-01" ^
-H "Content-Type: application/json" ^
-H "Ocp-Apim-Subscription-Key: %LANGUAGE_KEY%" ^
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"
PowerShell
curl.exe -X POST $env:LANGUAGE_ENDPOINT/language/:analyze-text?api-version=2022-05-01 `
-H "Content-Type: application/json" `
-H "Ocp-Apim-Subscription-Key: $env:LANGUAGE_KEY" `
-d "@C:\Users\<myaccount>\Desktop\test_pii_payload.json"
Resposta JSON
{
"kind": "PiiEntityRecognitionResults",
"results": {
"documents": [{
"redactedText": "Call our office at ************, or send an email to *******************",
"id": "1",
"entities": [{
"text": "312-555-1234",
"category": "PhoneNumber",
"offset": 19,
"length": 12,
"confidenceScore": 0.8
}, {
"text": "support@contoso.com",
"category": "Email",
"offset": 53,
"length": 19,
"confidenceScore": 0.8
}],
"warnings": []
}],
"errors": [],
"modelVersion": "2021-01-15"
}
}
Pré-requisitos
Navegue até o Playground da Fábrica de IA do Azure
Usando o painel esquerdo, selecione Playgrounds. Em seguida, selecione o botão Experimentar o Playground de Idiomas.
Use PII no Playground da Fábrica de IA do Azure
O Playground de Idiomas consiste em quatro seções:
- Faixa superior: você pode selecionar qualquer um dos serviços de idioma disponíveis no momento aqui.
- Painel direito: esse painel é onde você pode encontrar as opções de Configuração para o serviço, como a API e a versão do modelo, juntamente com recursos específicos para o serviço.
- Painel central: é onde você insere seu texto para processamento. Depois que a operação for executada, alguns resultados serão mostrados aqui.
- Painel direito: é onde os Detalhes da operação de execução são mostrados.
Aqui você pode selecionar entre dois recursos de detecção de Informações de Identificação Pessoal (PII) escolhendo os blocos de faixa superior, Extrair PII da conversa ou Extrair PII do texto. Cada um é para um cenário diferente.
Extrair informações pessoais identificáveis da conversa
Extrair PII da conversa foi projetado para identificar e mascarar informações de identificação pessoal em texto de conversa.
Na Configuração, há as seguintes opções:
Opção | Descrição |
---|---|
Selecionar a versão da API | Selecionar qual versão da API usar. |
Selecionar a versão do modelo | Selecionar qual versão do modelo usar. |
Selecionar o idioma do texto | Selecionar o idioma de entrada. |
Selecionar tipos a serem incluídos | Selecionar os tipos de informações que você deseja redigir. |
Especificar política de redação | Selecionar o método de redação. |
Especificar o caractere de redação | Selecionar qual caractere é usado para redação. Disponível apenas com a política de redação CharacterMask. |
Após a conclusão da operação, o tipo de entidade é exibido abaixo de cada entidade no painel central e a seção Detalhes contém os seguintes campos para cada entidade:
Campo | Descrição |
---|---|
Entidade | A entidade detectada. |
Categoria | O tipo de entidade detectada. |
Deslocamento | O número de caracteres que a entidade foi detectada desde o início da linha. |
Comprimento | O comprimento de caracteres da entidade. |
Confiança | O grau de confiança do modelo na correção da identificação do tipo da entidade. |
Extrair PII do texto
Extrair PII do texto foi projetado para identificar e mascarar informações de identificação pessoal no texto.
Na Configuração, há as seguintes opções:
Opção | Descrição |
---|---|
Selecionar a versão da API | Selecionar qual versão da API usar. |
Selecionar a versão do modelo | Selecionar qual versão do modelo usar. |
Selecionar o idioma do texto | Selecionar o idioma de entrada. |
Selecionar tipos a serem incluídos | Selecionar os tipos de informações que você deseja redigir. |
Especificar política de redação | Selecionar o método de redação. |
Especificar o caractere de redação | Selecionar qual caractere é usado para redação. Disponível apenas com a política de redação CharacterMask. |
Após a conclusão da operação, o tipo de entidade é exibido abaixo de cada entidade no painel central e a seção Detalhes contém os seguintes campos para cada entidade:
Campo | Descrição |
---|---|
Entidade | A entidade detectada. |
Categoria | O tipo de entidade detectada. |
Deslocamento | O número de caracteres que a entidade foi detectada desde o início da linha. |
Comprimento | O comprimento de caracteres da entidade. |
Confiança | O grau de confiança do modelo na correção da identificação do tipo da entidade. |
Etiquetas | O grau de confiança do modelo na correção de cada tipo de entidade identificado. |
Limpar os recursos
Se quiser limpar e remover uma assinatura dos Serviços de IA do Azure, você poderá excluir o recurso ou grupo de recursos. Excluir o grupo de recursos também exclui todos os recursos associados a ele.