Compartilhar via


Cláusula IDENTIFIER

Aplica-se a:verificação marcada como sim SQL do Databricks marca de verificação sim Databricks Runtime 13.3 LTS e versões posteriores

A cláusula IDENTIFIER interpreta uma cadeia de caracteres constante como um:

  • nome da tabela ou exibição
  • nome da função
  • nome de coluna
  • nome do campo
  • nome do esquema

A cláusula permite a parametrização segura de injeção de SQL de instruções SQL.

A cláusula IDENTIFIER tem suporte para as seguintes instruções:

  • Tabela, exibição ou nome da função de um CREATE, ALTER, DROP, UNDROP
  • Nome da tabela de MERGE, UPDATE, DELETE, INSERT, COPY INTO
  • Destino de um SHOW ou DESCRIBE
  • USO de um esquema
  • Uma invocação de função
  • Uma coluna ou exibição referenciada em uma consulta. Isso inclui consultas inseridas em uma instrução DDL ou DML.

Ao utilizar a cláusula do identificador, ela não pode ser inserida em um identificador.

Sintaxe

IDENTIFIER ( strExpr )

Parâmetros

Exemplos

Scala

// Creation of a table using parameter marker.
spark.sql("CREATE TABLE IDENTIFIER(:mytab)(c1 INT)", args = Map("mytab" -> "tab1"))

// Altering a table with a fixed schema and a parameterized table name.
spark.sql("ALTER TABLE IDENTIFIER('default.' || :mytab) ADD COLUMN c2 INT)", args = Map("mytab" -> "tab1"))

// Dropping a table with separate schema and table parameters.
spark.sql("DROP TABLE IDENTIFIER(:myschema || '.' || :mytab)", args = Map("mySchema" -> "default", "mytab" -> "tab1"))

// A parameterized reference to a table in a query. The table name is qualified and uses back-ticks.
spark.sql("SELECT * FROM IDENTIFIER(:mytab)", args = Map("mytab" -> "`default`.`tab1`"))

// You cannot qualify the IDENTIFIER claue or use it as a qualifier itself.
spark.sql("SELECT * FROM myschema.IDENTIFIER(:mytab)", args = Map("mytab" -> "`tab1`"))

spark.sql("SELECT * FROM IDENTIFIER(:myschema).mytab", args = Map("mychema" -> "`default`"))

// A parameterized column reference
spark.sql("SELECT IDENTIFIER(:col) FROM VALUES(1) AS T(c1)", args = Map("col" -> "t.c1"))

// Passing in an aggregate function name as a parameter
spark.sql("SELECT IDENTIFIER(:agg)(c1) FROM VALUES(1), (2) AS T(c1)", args = Map("agg" -> "max"))

SQL

-- Creation of a table using variable.
> DECLARE mytab = 'tab1';
> CREATE TABLE IDENTIFIER(mytab)(c1 INT);

-- Altering a table with a fixed schema and a parameterized table name.
> ALTER TABLE IDENTIFIER('default.' || mytab) ADD COLUMN c2 INT;

-- Inserting using a parameterized table name. The table name is qualified and uses back-ticks.
> SET VAR mytab = '`default`.`tab1`';
> INSERT INTO IDENTIFIER(mytab) VALUES(1, 2);

-- A parameterized reference to a table in a query.
> SELECT * FROM IDENTIFIER(mytab);
  1   2

-- Dropping a table with separate schema and table parameters.
> DECLARE myschema = 'default';
> SET VAR mytab = 'tab1';
> DROP TABLE IDENTIFIER(myschema || '.' || mytab);

 -- You cannot qualify the IDENTIFIER claue or use it as a qualifier itself.
> SELECT * FROM myschema.IDENTIFIER('tab');
Error: PARSE_SYNTAX_ERROR

> SELECT * FROM IDENTIFIER('default').mytab;
Error: PARSE_SYNTAX_ERROR

-- A parameterized column reference
> DECLARE col = 't.c1';
> SELECT IDENTIFIER(col) FROM VALUES(1) AS T(c1);
  1

-- Passing in an aggregate function name as a parameter
> DECLARE agg = 'max';
> SELECT IDENTIFIER(agg)(c1) FROM VALUES(1), (2) AS T(c1);
  2