Compartilhar via


Gravar mensagens no Apache HBase® com a API DataStream do Apache Flink®

Observação

Desativaremos o Microsoft Azure HDInsight no AKS em 31 de janeiro de 2025. Para evitar o encerramento abrupto das suas cargas de trabalho, você precisará migrá-las para o Microsoft Fabric ou para um produto equivalente do Azure antes de 31 de janeiro de 2025. Os clusters restantes em sua assinatura serão interrompidos e removidos do host.

Somente o suporte Básico do Azure estará disponível até a data de desativação.

Importante

Esse recurso está atualmente na visualização. Os Termos de uso complementares para versões prévias do Microsoft Azure incluem mais termos legais que se aplicam aos recursos do Azure que estão em versão beta, em versão prévia ou ainda não lançados em disponibilidade geral. Para obter informações sobre essa versão prévia específica, confira Informações sobre a versão prévia do Azure HDInsight no AKS. Caso tenha perguntas ou sugestões de recursos, envie uma solicitação no AskHDInsight com os detalhes e siga-nos para ver mais atualizações sobre a Comunidade do Azure HDInsight.

Neste artigo, sabia como gravar mensagens no HBase com a API de DataStream do Apache Flink.

Visão geral

O Apache Flink oferece o conector HBase como um coletor e, com esse conector com o Flink, você pode armazenar a saída de um aplicativo de processamento em tempo real no HBase. Saiba como processar dados de streaming no HDInsight Kafka como uma origem, executar transformações e, em seguida, coletar na tabela HBase do HDInsight.

Em um cenário real, este exemplo é uma camada de análise de fluxo para obter valor da análise de IOT (Internet das Coisas), que usa dados de sensor dinâmico. O fluxo do Flink pode ler dados do artigo do Kafka e gravá-los na tabela do HBase. Se houver um aplicativo IOT de streaming em tempo real, as informações poderão ser coletadas, transformadas e otimizadas.

Pré-requisitos

Etapas de implementação

Usar o pipeline para produzir o tópico de Kafka (tópico do evento de clique do usuário)

weblog.py

import json
import random
import time
from datetime import datetime

user_set = [
        'John',
        'XiaoMing',
        'Mike',
        'Tom',
        'Machael',
        'Zheng Hu',
        'Zark',
        'Tim',
        'Andrew',
        'Pick',
        'Sean',
        'Luke',
        'Chunck'
]

web_set = [
        'https://github.com',
        'https://www.bing.com/new',
        'https://kafka.apache.org',
        'https://hbase.apache.org',
        'https://flink.apache.org',
        'https://spark.apache.org',
        'https://trino.io',
        'https://hadoop.apache.org',
        'https://stackoverflow.com',
        'https://docs.python.org',
        'https://azure.microsoft.com/products/category/storage',
        '/azure/hdinsight/hdinsight-overview',
        'https://azure.microsoft.com/products/category/storage'
]

def main():
        while True:
                if random.randrange(13) < 4:
                        url = random.choice(web_set[:3])
                else:
                        url = random.choice(web_set)

                log_entry = {
                        'userName': random.choice(user_set),
                        'visitURL': url,
                        'ts': datetime.now().strftime("%m/%d/%Y %H:%M:%S")
                }

                print(json.dumps(log_entry))
                time.sleep(0.05)

if __name__ == "__main__":
    main()

Usar pipeline para produzir o tópico de Kafka

Vamos usar click_events para o tópico de Kafka

python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events

Comandos de exemplo no Kafka

-- create topic (replace with your Kafka bootstrap server)
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --create --replication-factor 2 --partitions 3 --topic click_events --bootstrap-server wn0-contsk:9092

-- delete topic (replace with your Kafka bootstrap server)
/usr/hdp/current/kafka-broker/bin/kafka-topics.sh --delete  --topic click_events --bootstrap-server wn0-contsk:9092

-- produce topic (replace with your Kafka bootstrap server)
python weblog.py | /usr/hdp/current/kafka-broker/bin/kafka-console-producer.sh --bootstrap-server wn0-contsk:9092 --topic click_events

-- consume topic
/usr/hdp/current/kafka-broker/bin/kafka-console-consumer.sh --bootstrap-server wn0-contsk:9092 --topic click_events --from-beginning
{"userName": "Luke", "visitURL": "https://azure.microsoft.com/products/category/storage", "ts": "07/11/2023 06:39:43"}
{"userName": "Sean", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:43"}
{"userName": "XiaoMing", "visitURL": "https://hbase.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "Machael", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:43"}
{"userName": "Andrew", "visitURL": "https://github.com", "ts": "07/11/2023 06:39:43"}
{"userName": "Zark", "visitURL": "https://kafka.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "XiaoMing", "visitURL": "https://trino.io", "ts": "07/11/2023 06:39:43"}
{"userName": "Zark", "visitURL": "https://flink.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "Mike", "visitURL": "https://kafka.apache.org", "ts": "07/11/2023 06:39:43"}
{"userName": "Zark", "visitURL": "https://docs.python.org", "ts": "07/11/2023 06:39:44"}
{"userName": "John", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:44"}
{"userName": "Mike", "visitURL": "https://hadoop.apache.org", "ts": "07/11/2023 06:39:44"}
{"userName": "Tim", "visitURL": "https://www.bing.com/new", "ts": "07/11/2023 06:39:44"}
.....

Criar tabela HBase no cluster do HDInsight HBase

root@hn0-contos:/home/sshuser# hbase shell
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usr/hdp/5.1.1.3/hadoop/lib/slf4j-reload4j-1.7.35.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/usr/hdp/5.1.1.3/hbase/lib/client-facing-thirdparty/slf4j-reload4j-1.7.33.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Reload4jLoggerFactory]
HBase Shell
Use "help" to get list of supported commands.
Use "exit" to quit this interactive shell.
For more information, see, http://hbase.apache.org/2.0/book.html#shell
Version 2.4.11.5.1.1.3, rUnknown, Thu Apr 20 12:31:07 UTC 2023
Took 0.0032 seconds
hbase:001:0> create 'user_click_events','user_info'
Created table user_click_events
Took 5.1399 seconds
=> Hbase::Table - user_click_events
hbase:002:0>

criar projeto maven com o pom.xml a seguir

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>contoso.example</groupId>
    <artifactId>FlinkHbaseDemo</artifactId>
    <version>1.0-SNAPSHOT</version>
    <properties>
        <maven.compiler.source>1.8</maven.compiler.source>
        <maven.compiler.target>1.8</maven.compiler.target>
        <flink.version>1.17.0</flink.version>
        <java.version>1.8</java.version>
        <scala.binary.version>2.12</scala.binary.version>
        <hbase.version>2.4.11</hbase.version>
        <kafka.version>3.2.0</kafka.version>
    </properties>
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-hbase-base -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-hbase-base</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hbase/hbase-client -->
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
            <version>${hbase.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.1.1</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-base -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-base</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-core</artifactId>
            <version>${flink.version}</version>
        </dependency>
    </dependencies>
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <appendAssemblyId>false</appendAssemblyId>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>

Código-fonte

Escrever o programa Coletor do HBase

HBaseWriterSink

package contoso.example;

import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;

public class HBaseWriterSink extends RichSinkFunction<Tuple3<String,String,String>> {
    String hbase_zk = "<update-hbasezk-ip>:2181,<update-hbasezk-ip>:2181,<update-hbasezk-ip>:2181";
    Connection hbase_conn;
    Table tb;
    int i = 0;
    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
        org.apache.hadoop.conf.Configuration hbase_conf = HBaseConfiguration.create();
        hbase_conf.set("hbase.zookeeper.quorum", hbase_zk);
        hbase_conf.set("zookeeper.znode.parent", "/hbase-unsecure");
        hbase_conn = ConnectionFactory.createConnection(hbase_conf);
        tb = hbase_conn.getTable(TableName.valueOf("user_click_events"));
    }

    @Override
    public void invoke(Tuple3<String,String,String> value, Context context) throws Exception {
        byte[] rowKey = Bytes.toBytes(String.format("%010d", i++));
        Put put = new Put(rowKey);
        put.addColumn(Bytes.toBytes("user_info"), Bytes.toBytes("userName"), Bytes.toBytes(value.f0));
        put.addColumn(Bytes.toBytes("user_info"), Bytes.toBytes("visitURL"), Bytes.toBytes(value.f1));
        put.addColumn(Bytes.toBytes("user_info"), Bytes.toBytes("ts"), Bytes.toBytes(value.f2));
        tb.put(put);
    };

    public void close() throws Exception {
        if (null != tb) tb.close();
        if (null != hbase_conn) hbase_conn.close();
    }
}

main:KafkaSinkToHbase

Escrever um Coletor Kafka no Programa HBase

package contoso.example;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.common.typeinfo.Types;

import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class KafkaSinkToHbase {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().setParallelism(1);
        String kafka_brokers = "10.0.0.38:9092,10.0.0.39:9092,10.0.0.40:9092";

        KafkaSource<String> source = KafkaSource.<String>builder()
                .setBootstrapServers(kafka_brokers)
                .setTopics("click_events")
                .setGroupId("my-group")
                .setStartingOffsets(OffsetsInitializer.earliest())
                .setValueOnlyDeserializer(new SimpleStringSchema())
                .build();

        DataStreamSource<String> kafka = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source").setParallelism(1);
        DataStream<Tuple3<String,String,String>> dataStream = kafka.map(line-> {
            String[] fields = line.toString().replace("{","").replace("}","").
            replace("\"","").split(",");
            Tuple3<String, String,String> tuple3 = Tuple3.of(fields[0].substring(10),fields[1].substring(11),fields[2].substring(5));
            return tuple3;
        }).returns(Types.TUPLE(Types.STRING,Types.STRING,Types.STRING));

        dataStream.addSink(new HBaseWriterSink());

        env.execute("Kafka Sink To Hbase");
    }
}

Enviar trabalho

  1. Carregue o jar do trabalho na conta de armazenamento associada ao cluster.

    Captura de tela mostrando como carregar um jar.

  2. Adicione detalhes do trabalho na guia Modo de Aplicativo.

    Captura de tela mostrando o modo de aplicativo.

    Observação

    Adicione a configuração Hadoop.class.enable e classloader.resolve-order.

  3. Selecione Agregação de log de trabalhos para armazenar logs no ABFS.

    Captura de tela mostrando como enviar um trabalho pelo SSH na web.

  4. Enviar o trabalho.

  5. Você deve ser capaz de ver o status Trabalho enviado aqui.

    Captura de tela mostrando como verificar o trabalho na interface do usuário do Flink.

Validar dados da tabela HBase

hbase:001:0> scan 'user_click_events',{LIMIT=>5}
ROW                                  COLUMN+CELL
0000000000                          column=user_info:ts, timestamp=2024-03-20T02:02:46.932, value=03/20/2024 02:02:43
0000000000                          column=user_info:userName, timestamp=2024-03-20T02:02:46.932, value=Pick
0000000000                          column=user_info:visitURL, timestamp=2024-03-20T02:02:46.932, value=
https://hadoop.apache.org
0000000001                          column=user_info:ts, timestamp=2024-03-20T02:02:46.991, value=03/20/2024 02:02:43
0000000001                          column=user_info:userName, timestamp=2024-03-20T02:02:46.991, value=Zheng Hu
0000000001                          column=user_info:visitURL, timestamp=2024-03-20T02:02:46.991, value=/azure/hdinsight/hdinsight-overview
0000000002                          column=user_info:ts, timestamp=2024-03-20T02:02:47.001, value=03/20/2024 02:02:43
0000000002                          column=user_info:userName, timestamp=2024-03-20T02:02:47.001, value=Sean
0000000002                          column=user_info:visitURL, timestamp=2024-03-20T02:02:47.001, value=
https://spark.apache.org
0000000003                          column=user_info:ts, timestamp=2024-03-20T02:02:47.008, value=03/20/2024 02:02:43
0000000003                          column=user_info:userName, timestamp=2024-03-20T02:02:47.008, value=Zheng Hu
0000000003                          column=user_info:visitURL, timestamp=2024-03-20T02:02:47.008, value=
https://kafka.apache.org
0000000004                          column=user_info:ts, timestamp=2024-03-20T02:02:47.017, value=03/20/2024 02:02:43
0000000004                          column=user_info:userName, timestamp=2024-03-20T02:02:47.017, value=Chunck
0000000004                          column=user_info:visitURL, timestamp=2024-03-20T02:02:47.017, value=
https://github.com
5 row(s)
Took 0.9269 seconds

Observação

  • FlinkKafkaConsumer foi preterido e será removido com Flink 1.17, use KafkaSource em vez disso.
  • FlinkKafkaProducer foi preterido e será removido com o Flink 1.15, use KafkaSink em vez disso.

Referências