A Microsoft fornece o Azure Open Datasets no estado em que se encontra. A Microsoft não oferece garantias nem coberturas, expressas ou implícitas, em relação ao uso dos conjuntos de dados. Até o limite permitido pela legislação local, a Microsoft se exime de toda a obrigação por danos ou perdas, inclusive diretos, consequentes, especiais, indiretos, acidentais ou punitivos, resultantes do uso dos conjuntos de dados.
Esse conjunto de dados é fornecido de acordo com os termos originais com que a Microsoft recebeu os dados de origem. O conjunto de dados pode incluir dados originados da Microsoft.
Volume e retenção
Este conjunto de dados está armazenado no formato Parquet e contém dados do ano 2010.
Local de armazenamento
Este conjunto de dados está armazenado na região Leste dos EUA do Azure. É recomendável alocar recursos de computação no Leste dos EUA para afinidade.
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip
population = UsPopulationZip()
population_df = population.to_pandas_dataframe()
from azure.storage.blob import BlockBlobServicefrom azure.storage.blob import BlobServiceClient, BlobClient, ContainerClient
if azure_storage_account_name is None or azure_storage_sas_token is None:
raise Exception(
"Provide your specific name and key for your Azure Storage account--see the Prerequisites section earlier.")
print('Looking for the first parquet under the folder ' +
folder_name + ' in container "' + container_name + '"...')
container_url = f"https://{azure_storage_account_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
container_url, azure_storage_sas_token if azure_storage_sas_token else None)
container_client = blob_service_client.get_container_client(container_name)
blobs = container_client.list_blobs(folder_name)
sorted_blobs = sorted(list(blobs), key=lambda e: e.name, reverse=True)
targetBlobName = ''
for blob in sorted_blobs:
if blob.name.startswith(folder_name) and blob.name.endswith('.parquet'):
targetBlobName = blob.name
break
print('Target blob to download: ' + targetBlobName)
_, filename = os.path.split(targetBlobName)
blob_client = container_client.get_blob_client(targetBlobName)
with open(filename, 'wb') as local_file:
blob_client.download_blob().download_to_stream(local_file)
# Read the parquet file into Pandas data frame
import pandas as pd
print('Reading the parquet file into Pandas data frame')
df = pd.read_parquet(filename)
# you can add your filter at below
print('Loaded as a Pandas data frame: ')
df
Exemplo não disponível para essa combinação de plataforma/pacote.
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip
population = UsPopulationZip()
population_df = population.to_spark_dataframe()
display(population_df.limit(5))
Exemplo não disponível para essa combinação de plataforma/pacote.
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))
# This is a package in preview.
from azureml.opendatasets import UsPopulationZip
population = UsPopulationZip()
population_df = population.to_spark_dataframe()
# Display top 5 rows
display(population_df.limit(5))
Exemplo não disponível para essa combinação de plataforma/pacote.
# SPARK read parquet, note that it won't load any data yet by now
df = spark.read.parquet(wasbs_path)
print('Register the DataFrame as a SQL temporary view: source')
df.createOrReplaceTempView('source')
# Display top 10 rows
print('Displaying top 10 rows: ')
display(spark.sql('SELECT * FROM source LIMIT 10'))