Compartilhar via


Classe cauchy_distribution

Gera uma distribuição Cauchy.

Sintaxe

template<class RealType = double>
class cauchy_distribution {
public:
   // types
   typedef RealType result_type;
   struct param_type;

   // constructor and reset functions
   explicit cauchy_distribution(result_type a = 0.0, result_type b = 1.0);
   explicit cauchy_distribution(const param_type& parm);
   void reset();

   // generating functions
   template <class URNG>
   result_type operator()(URNG& gen);
   template <class URNG>
   result_type operator()(URNG& gen, const param_type& parm);

   // property functions
   result_type a() const;
   result_type b() const;
   param_type param() const;
   void param(const param_type& parm);
   result_type min() const;
   result_type max() const;
   };

Parâmetros

RealType
O tipo de resultado de ponto flutuante assume double como padrão. Para encontrar os tipos possíveis, confira <random>.

URNG
O mecanismo gerador de números aleatórios uniformes. Para encontrar os tipos possíveis, confira <random>.

Comentários

O modelo de classe descreve uma distribuição que produz valores de um tipo de ponto flutuante especificado pelo usuário ou de um tipo double, caso nenhum seja fornecido, distribuído de acordo com a Cauchy Distribution. A tabela a seguir contém links para artigos sobre cada um dos membros.

cauchy_distribution
param_type

As funções de propriedade a() e b() retornam os respectivos valores para os parâmetros de distribuição armazenados a e b.

O membro da propriedade param() define ou retorna o pacote de parâmetros de distribuição armazenado param_type.

As funções membro min() e max() retornam o menor resultado possível e o maior resultado possível, respectivamente.

A função membro reset() descarta qualquer valor armazenado em cache, de forma que o resultado da próxima chamada para operator() não dependerá dos valores obtidos do mecanismo antes da chamada.

As funções membro operator() retornam o próximo valor gerado com base no mecanismo URNG, do pacote de parâmetros atual ou do pacote de parâmetros especificado.

Para obter mais informações sobre as classes de distribuição e seus membros, confira <random>.

Para obter informações detalhadas sobre a distribuição cauchy, consulte o artigo Cauchy Distribution (Distribuição cauchy), da Wolfram MathWorld.

Exemplo

// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>

void test(const double a, const double b, const int s) {

    // uncomment to use a non-deterministic generator
    //    std::random_device gen;

    std::mt19937 gen(1701);

    std::cauchy_distribution<> distr(a, b);

    std::cout << std::endl;
    std::cout << "min() == " << distr.min() << std::endl;
    std::cout << "max() == " << distr.max() << std::endl;
    std::cout << "a() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.a() << std::endl;
    std::cout << "b() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.b() << std::endl;

    // generate the distribution as a histogram
    std::map<double, int> histogram;
    for (int i = 0; i < s; ++i) {
        ++histogram[distr(gen)];
    }

    // print results
    std::cout << "Distribution for " << s << " samples:" << std::endl;
    int counter = 0;
    for (const auto& elem : histogram) {
        std::cout << std::fixed << std::setw(11) << ++counter << ": "
            << std::setw(14) << std::setprecision(10) << elem.first << std::endl;
    }
    std::cout << std::endl;
}

int main()
{
    double a_dist = 0.0;
    double b_dist = 1;

    int samples = 10;

    std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
    std::cout << "Enter a floating point value for the 'a' distribution parameter: ";
    std::cin >> a_dist;
    std::cout << "Enter a floating point value for the 'b' distribution parameter (must be greater than zero): ";
    std::cin >> b_dist;
    std::cout << "Enter an integer value for the sample count: ";
    std::cin >> samples;

    test(a_dist, b_dist, samples);
}

Primeira execução:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 0
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10

min() == -1.79769e+308
max() == 1.79769e+308
a() == 0.0000000000
b() == 1.0000000000
Distribution for 10 samples:
    1: -3.4650392984
    2: -2.6369564174
    3: -0.0786978867
    4: -0.0609632093
    5: 0.0589387400
    6: 0.0589539764
    7: 0.1004592006
    8: 1.0965724260
    9: 1.4389408122
    10: 2.5253154706

Segunda execução:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 0
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 10
Enter an integer value for the sample count: 10

min() == -1.79769e+308
max() == 1.79769e+308
a() == 0.0000000000
b() == 10.0000000000
Distribution for 10 samples:
    1: -34.6503929840
    2: -26.3695641736
    3: -0.7869788674
    4: -0.6096320926
    5: 0.5893873999
    6: 0.5895397637
    7: 1.0045920062
    8: 10.9657242597
    9: 14.3894081218
    10: 25.2531547063

Terceira execução:

Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 10
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 10
Enter an integer value for the sample count: 10

min() == -1.79769e+308
max() == 1.79769e+308
a() == 10.0000000000
b() == 10.0000000000
Distribution for 10 samples:
    1: -24.6503929840
    2: -16.3695641736
    3: 9.2130211326
    4: 9.3903679074
    5: 10.5893873999
    6: 10.5895397637
    7: 11.0045920062
    8: 20.9657242597
    9: 24.3894081218
    10: 35.2531547063

Requisitos

Cabeçalho:<random>

Namespace: std

cauchy_distribution::cauchy_distribution

Constrói a distribuição.

explicit cauchy_distribution(result_type a = 0.0, result_type b = 1.0);
explicit cauchy_distribution(const param_type& parm);

Parâmetros

a
O parâmetro de distribuição a.

b
O parâmetro de distribuição b.

parm
A estrutura param_type usada para construir a distribuição.

Comentários

Pré-condição: 0.0 < b

O primeiro construtor constrói um objeto cujo valor a armazenado contém o valor a e cujo valor b armazenado contém o valor b.

O segundo construtor cria um objeto cujos parâmetros armazenados são inicializados de parm. Você pode chamar a função de membro param() para obter e definir os parâmetros atuais de uma distribuição existente.

cauchy_distribution::param_type

Armazena todos os parâmetros da distribuição.

struct param_type {
   typedef cauchy_distribution<result_type> distribution_type;
   param_type(result_type a = 0.0, result_type b = 1.0);
   result_type a() const;
   result_type b() const;

   bool operator==(const param_type& right) const;
   bool operator!=(const param_type& right) const;
   };

Parâmetros

a
O parâmetro de distribuição a.

b
O parâmetro de distribuição b.

direita
O objeto param_type a ser comparado a este.

Comentários

Pré-condição: 0.0 < b

Essa estrutura pode ser enviada ao construtor de classe de distribuição na instanciação, para a função de membro param() para definir os parâmetros armazenados de uma distribuição existente e para operator() a ser usado no lugar dos parâmetros armazenados.

Confira também

<random>