NaiveBayesMulticlassTrainer Classe
Definição
Importante
Algumas informações se referem a produtos de pré-lançamento que podem ser substancialmente modificados antes do lançamento. A Microsoft não oferece garantias, expressas ou implícitas, das informações aqui fornecidas.
Para IEstimator<TTransformer> treinar um modelo Naive Bayes de várias classes que dá suporte a valores de recursos binários.
public sealed class NaiveBayesMulticlassTrainer : Microsoft.ML.Trainers.TrainerEstimatorBase<Microsoft.ML.Data.MulticlassPredictionTransformer<Microsoft.ML.Trainers.NaiveBayesMulticlassModelParameters>,Microsoft.ML.Trainers.NaiveBayesMulticlassModelParameters>
type NaiveBayesMulticlassTrainer = class
inherit TrainerEstimatorBase<MulticlassPredictionTransformer<NaiveBayesMulticlassModelParameters>, NaiveBayesMulticlassModelParameters>
Public NotInheritable Class NaiveBayesMulticlassTrainer
Inherits TrainerEstimatorBase(Of MulticlassPredictionTransformer(Of NaiveBayesMulticlassModelParameters), NaiveBayesMulticlassModelParameters)
- Herança
-
TrainerEstimatorBase<MulticlassPredictionTransformer<NaiveBayesMulticlassModelParameters>,NaiveBayesMulticlassModelParameters>NaiveBayesMulticlassTrainer
Comentários
Para criar este treinador, use NaiveBayes.
Colunas de entrada e saída
Os dados da coluna do rótulo de entrada devem ser do tipo chave e a coluna de recurso deve ser um vetor de tamanho conhecido de Single.
Este treinador gera as seguintes colunas:
Nome da Coluna de Saída | Tipo de coluna | Descrição |
---|---|---|
Score |
Vetor de Single | As pontuações de todas as classes. Um valor mais alto significa maior probabilidade de se enquadrar na classe associada. Se o elemento iº elemento tiver o maior valor, o índice de rótulo previsto será i. Observe que i é o índice baseado em zero. |
PredictedLabel |
tipo de chave | O índice do rótulo previsto. Se seu valor for i, o rótulo real será a iº categoria no tipo de rótulo de entrada com valor de chave. |
Características do Treinador
Ferramenta de machine learning | Classificação multiclasse |
A normalização é necessária? | Sim |
O cache é necessário? | No |
NuGet necessário além de Microsoft.ML | Nenhum |
Exportável para ONNX | Sim |
Detalhes do algoritmo de treinamento
Naive Bayes é um classificador probabilístico que pode ser usado para problemas de várias classes.
Usando o teorema de Bayes, a probabilidade condicional de um exemplo pertencente a uma classe pode ser calculada com base na contagem de exemplo para cada grupo de combinação de recursos.
No entanto, o Classificador naive Bayes só será viável se o número de recursos e os valores que cada recurso pode levar for relativamente pequeno.
Ele pressupõe independência entre a presença de recursos em uma classe, mesmo que eles possam ser dependentes uns dos outros.
Este treinador de várias classes aceita valores de recurso "binários" do tipo float: valores de recurso maiores que zero são tratados como true
e valores de recurso menores ou iguais a 0 são tratados como false
.
Verifique a seção Consulte Também para obter links para exemplos de uso.
Campos
FeatureColumn |
A coluna de recursos que o treinador espera. (Herdado de TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
A coluna de rótulo que o treinador espera. Pode ser |
WeightColumn |
A coluna de peso que o treinador espera. Pode ser |
Propriedades
Info |
Informações auxiliares sobre o treinador em termos de suas funcionalidades e requisitos. |
Métodos
Fit(IDataView) |
Treina e retorna um ITransformer. (Herdado de TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
Para IEstimator<TTransformer> treinar um modelo Naive Bayes de várias classes que dá suporte a valores de recursos binários. (Herdado de TrainerEstimatorBase<TTransformer,TModel>) |
Métodos de Extensão
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Acrescente um "ponto de verificação de cache" à cadeia de estimativas. Isso garantirá que os estimadores downstream serão treinados em relação aos dados armazenados em cache. É útil ter um ponto de verificação de cache antes dos treinadores que fazem várias passagens de dados. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Dado um estimador, retorne um objeto de encapsulamento que chamará um delegado uma vez Fit(IDataView) chamado. Geralmente, é importante que um estimador retorne informações sobre o que estava em forma, e é por isso que o Fit(IDataView) método retorna um objeto especificamente tipado, em vez de apenas um geral ITransformer. No entanto, ao mesmo tempo, IEstimator<TTransformer> muitas vezes são formados em pipelines com muitos objetos, portanto, talvez seja necessário construir uma cadeia de estimadores por meio EstimatorChain<TLastTransformer> de onde o estimador para o qual queremos que o transformador seja enterrado em algum lugar nesta cadeia. Para esse cenário, podemos por meio desse método anexar um delegado que será chamado quando fit for chamado. |