SdcaNonCalibratedMulticlassTrainer Classe
Definição
Importante
Algumas informações se referem a produtos de pré-lançamento que podem ser substancialmente modificados antes do lançamento. A Microsoft não oferece garantias, expressas ou implícitas, das informações aqui fornecidas.
AIEstimator<TTransformer> previsão de um destino usando um classificador de várias classes lineares. O modelo LinearMulticlassModelParameters treinado produz probabilidades de classes.
public sealed class SdcaNonCalibratedMulticlassTrainer : Microsoft.ML.Trainers.SdcaMulticlassTrainerBase<Microsoft.ML.Trainers.LinearMulticlassModelParameters>
type SdcaNonCalibratedMulticlassTrainer = class
inherit SdcaMulticlassTrainerBase<LinearMulticlassModelParameters>
Public NotInheritable Class SdcaNonCalibratedMulticlassTrainer
Inherits SdcaMulticlassTrainerBase(Of LinearMulticlassModelParameters)
- Herança
-
SdcaTrainerBase<SdcaMulticlassTrainerBase<TModel>.MulticlassOptions,MulticlassPredictionTransformer<TModel>,TModel>SdcaNonCalibratedMulticlassTrainer
Comentários
Para criar esse treinador, use SdcaMaximumEntropy ou SdcaMaximumEntropy(Options).
Colunas de entrada e saída
Os dados da coluna de rótulo de entrada devem ser do tipo chave e a coluna de recurso deve ser um vetor de tamanho conhecido de Single.
Este treinador gera as seguintes colunas:
Nome da Coluna de Saída | Tipo de coluna | Descrição |
---|---|---|
Score |
Vetor de Single | As pontuações de todas as classes. Um valor mais alto significa maior probabilidade de se enquadrar na classe associada. Se o elemento iº elemento tiver o maior valor, o índice de rótulo previsto será i. Observe que i é o índice baseado em zero. |
PredictedLabel |
tipo de chave | O índice do rótulo previsto. Se seu valor for i, o rótulo real será a iº categoria no tipo de rótulo de entrada com valor de chave. |
Características do treinador
Ferramenta de machine learning | Classificação multiclasse |
A normalização é necessária? | Sim |
O cache é necessário? | No |
NuGet necessário além de Microsoft.ML | Nenhum |
Exportável para ONNX | Sim |
Função Score
Isso treina um modelo linear para resolver problemas de classificação multiclasse. Suponha que o número de classes seja $m$ e o número de recursos seja $n$. Ele atribui à classe $c$-th um vetor coeficiente $\textbf{w}_c \in {\mathbb R}^n$ e um viés $b_c \in {\mathbb R}$, para $c=1,\dots,m$. Dado um vetor de recurso $\textbf{x} \in {\mathbb R}^n$, a pontuação da classe $c$-th seria $\hat{y}^c = \textbf{w}_c^T \textbf{x} + b_c$. Observe que o valor $c$-th na coluna de pontuação de saída é apenas $\hat{y}^c$.
Detalhes do algoritmo de treinamento
Consulte a documentação do SdcaMulticlassTrainerBase.
Verifique a seção Consulte Também para obter links para exemplos de uso.
Campos
FeatureColumn |
A coluna de recursos esperada pelo treinador. (Herdado de TrainerEstimatorBase<TTransformer,TModel>) |
LabelColumn |
A coluna de rótulo esperada pelo treinador. Pode ser |
WeightColumn |
A coluna de peso que o treinador espera. Pode ser |
Propriedades
Info |
AIEstimator<TTransformer> previsão de um destino usando um classificador de várias classes lineares. O modelo LinearMulticlassModelParameters treinado produz probabilidades de classes. (Herdado de StochasticTrainerBase<TTransformer,TModel>) |
Métodos
Fit(IDataView) |
Treina e retorna um ITransformer. (Herdado de TrainerEstimatorBase<TTransformer,TModel>) |
GetOutputSchema(SchemaShape) |
AIEstimator<TTransformer> previsão de um destino usando um classificador de várias classes lineares. O modelo LinearMulticlassModelParameters treinado produz probabilidades de classes. (Herdado de TrainerEstimatorBase<TTransformer,TModel>) |
Métodos de Extensão
AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment) |
Acrescente um 'ponto de verificação de cache' à cadeia do avaliador. Isso garantirá que os estimadores downstream sejam treinados em relação aos dados armazenados em cache. É útil ter um ponto de verificação de cache antes dos treinadores que levam vários passes de dados. |
WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>) |
Dado um avaliador, retorne um objeto de encapsulamento que chamará um delegado uma vez Fit(IDataView) que seja chamado. Geralmente, é importante que um avaliador retorne informações sobre o que estava em forma, e é por isso que o Fit(IDataView) método retorna um objeto especificamente tipado, em vez de apenas um geral ITransformer. No entanto, ao mesmo tempo, IEstimator<TTransformer> muitas vezes são formados em pipelines com muitos objetos, portanto, talvez seja necessário criar uma cadeia de avaliadores por meio EstimatorChain<TLastTransformer> de onde o estimador para o qual queremos obter o transformador está enterrado em algum lugar nesta cadeia. Para esse cenário, podemos por meio desse método anexar um delegado que será chamado assim que o ajuste for chamado. |
Aplica-se a
Confira também
- SdcaNonCalibrated(MulticlassClassificationCatalog+MulticlassClassificationTrainers, SdcaNonCalibratedMulticlassTrainer+Options)
- SdcaNonCalibrated(MulticlassClassificationCatalog+MulticlassClassificationTrainers, String, String, String, ISupportSdcaClassificationLoss, Nullable<Single>, Nullable<Single>, Nullable<Int32>)
- SdcaNonCalibratedMulticlassTrainer.Options