Compartilhar via


Como gravar um loop parallel_for

Este exemplo demonstra como usar concurrency::parallel_for para computar o produto de duas matrizes.

Exemplo

O exemplo a seguir mostra a função de matrix_multiply , que calcula o produto de duas matrizes quadradas.

// Computes the product of two square matrices. 
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
   for (size_t i = 0; i < size; i++) 
   {
      for (size_t j = 0; j < size; j++)
      {
         double temp = 0;
         for (int k = 0; k < size; k++)
         {
            temp += m1[i][k] * m2[k][j];
         }
         result[i][j] = temp;
      }
   }
}

O exemplo a seguir mostra a função de parallel_matrix_multiply , que usa o algoritmo de parallel_for em paralelo para executar o loop externo.

// Computes the product of two square matrices in parallel. 
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
   parallel_for (size_t(0), size, [&](size_t i)
   {
      for (size_t j = 0; j < size; j++)
      {
         double temp = 0;
         for (int k = 0; k < size; k++)
         {
            temp += m1[i][k] * m2[k][j];
         }
         result[i][j] = temp;
      }
   });
}

Este exemplo parallelizes o loop externo somente como executa o trabalho para se beneficiar de sobrecarga para o processamento paralelo. Se você parallelize o loop interno, você não receberá um ganho de desempenho porque a quantidade pequena de trabalho que o loop interno não executa supera a sobrecarga para o processamento paralelo. Consequentemente, parallelizing o loop externo só é a melhor maneira de maximizar os benefícios de simultaneidade na maioria dos sistemas.

O seguinte exemplo mais completo compara o desempenho da função de matrix_multiply na função de parallel_matrix_multiply .

// parallel-matrix-multiply.cpp 
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <iostream>
#include <random>

using namespace concurrency;
using namespace std;

// Calls the provided work function and returns the number of milliseconds  
// that it takes to call that function. 
template <class Function>
__int64 time_call(Function&& f)
{
   __int64 begin = GetTickCount();
   f();
   return GetTickCount() - begin;
}

// Creates a square matrix with the given number of rows and columns. 
double** create_matrix(size_t size);

// Frees the memory that was allocated for the given square matrix. 
void destroy_matrix(double** m, size_t size);

// Initializes the given square matrix with values that are generated 
// by the given generator function. 
template <class Generator>
double** initialize_matrix(double** m, size_t size, Generator& gen);

// Computes the product of two square matrices. 
void matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
   for (size_t i = 0; i < size; i++) 
   {
      for (size_t j = 0; j < size; j++)
      {
         double temp = 0;
         for (int k = 0; k < size; k++)
         {
            temp += m1[i][k] * m2[k][j];
         }
         result[i][j] = temp;
      }
   }
}

// Computes the product of two square matrices in parallel. 
void parallel_matrix_multiply(double** m1, double** m2, double** result, size_t size)
{
   parallel_for (size_t(0), size, [&](size_t i)
   {
      for (size_t j = 0; j < size; j++)
      {
         double temp = 0;
         for (int k = 0; k < size; k++)
         {
            temp += m1[i][k] * m2[k][j];
         }
         result[i][j] = temp;
      }
   });
}

int wmain()
{
   // The number of rows and columns in each matrix. 
   // TODO: Change this value to experiment with serial  
   // versus parallel performance.  
   const size_t size = 750;

   // Create a random number generator.
   mt19937 gen(42);

   // Create and initialize the input matrices and the matrix that 
   // holds the result. 
   double** m1 = initialize_matrix(create_matrix(size), size, gen);
   double** m2 = initialize_matrix(create_matrix(size), size, gen);
   double** result = create_matrix(size);

   // Print to the console the time it takes to multiply the  
   // matrices serially.
   wcout << L"serial: " << time_call([&] {
      matrix_multiply(m1, m2, result, size);
   }) << endl;

   // Print to the console the time it takes to multiply the  
   // matrices in parallel.
   wcout << L"parallel: " << time_call([&] {
      parallel_matrix_multiply(m1, m2, result, size);
   }) << endl;

   // Free the memory that was allocated for the matrices.
   destroy_matrix(m1, size);
   destroy_matrix(m2, size);
   destroy_matrix(result, size);
}

// Creates a square matrix with the given number of rows and columns. 
double** create_matrix(size_t size)
{
   double** m = new double*[size];
   for (size_t i = 0; i < size; ++i)
   {
      m[i] = new double[size];
   }
   return m;
}

// Frees the memory that was allocated for the given square matrix. 
void destroy_matrix(double** m, size_t size)
{
   for (size_t i = 0; i < size; ++i)
   {
      delete[] m[i];
   }
   delete m;
}

// Initializes the given square matrix with values that are generated 
// by the given generator function. 
template <class Generator>
double** initialize_matrix(double** m, size_t size, Generator& gen)
{
   for (size_t i = 0; i < size; ++i)
   {
      for (size_t j = 0; j < size; ++j)
      {
         m[i][j] = static_cast<double>(gen());
      }
   }
   return m;
}

A seguinte saída de exemplo é para um computador que tem quatro processadores.

  

Compilando o código

Para compilar o código, copie-a e cole-o em um projeto do Visual Studio, ou cole-o em um arquivo chamadoparallel-matrix-multiply.cpp  e execute o comando a seguir em uma janela de prompt de comando do Visual Studio.

cl.exe /EHsc parallel-matrix-multiply.cpp

Consulte também

Referência

Função parallel_for

Conceitos

Algoritmos paralelos