Instruções passo a passo: criando uma rede de processamento de imagem
Este documento demonstra como criar uma rede dos blocos assíncronas de mensagem que executam o processamento de imagem.
A rede determina quais operações em execução em uma imagem com base em suas características. Este exemplo usa o modelo de fluxo de dados para rotear imagens pela rede. No modelo de fluxo de dados, os componentes independentes de um programa um com o outro se comunicam enviando mensagens. Quando um componente recebe uma mensagem, pode executar qualquer ação e depois passe o resultado dessa ação a outro componente. Compare com o modelo de fluxo de controle , em que um aplicativo usa estruturas de controle, por exemplo, instruções condicionais, loop, e assim por diante, para controlar a ordem das operações em um programa.
Uma rede baseada no fluxo de dados cria um pipeline de tarefas. Cada fase de pipeline é executada simultaneamente a parte da tarefa total. Uma analogia a esta é uma cadeia de fabricação para a produção auto. Conforme cada veículo passa pela cadeia de produção, uma estação monta o quadro, outro instalar o mecanismo, e assim por diante. Habilitando os vários veículos a ser montados simultaneamente, a cadeia de produção fornece melhor transferência do que veículos completos de montagem um de cada vez.
Pré-requisitos
Leia os seguintes documentos antes de iniciar esta explicação passo a passo:
Recomendamos também inclui os fundamentos de GDI+ antes de começar este passo a passo. Para obter mais informações sobre como GDI+, consulte GDI+.
Seções
Essa explicação passo a passo contém as seguintes seções:
Definindo a funcionalidade de processamento de imagem
Criando a rede de processamento de imagem
O Exemplo Completo
Definindo a funcionalidade de processamento de imagem
Esta seção mostra o suporte que suportam a rede de processamento de imagem trabalhar com imagens que são lidos do disco.
As seguintes funções, GetRGB e MakeColor, extração e combinam os componentes individuais de cor especificada, respectivamente.
// Retrieves the red, green, and blue components from the given
// color value.
void GetRGB(DWORD color, BYTE& r, BYTE& g, BYTE& b)
{
r = static_cast<BYTE>((color & 0x00ff0000) >> 16);
g = static_cast<BYTE>((color & 0x0000ff00) >> 8);
b = static_cast<BYTE>((color & 0x000000ff));
}
// Creates a single color value from the provided red, green,
// and blue components.
DWORD MakeColor(BYTE r, BYTE g, BYTE b)
{
return (r<<16) | (g<<8) | (b);
}
A seguinte função, ProcessImage, chama o objeto determinado de std::function para converter o valor da cor de cada x em um objeto de GDI+Bitmap . A função de ProcessImage usa o algoritmo de concurrency::parallel_for para processar em paralelo cada linha de bitmap.
// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
int width = bmp->GetWidth();
int height = bmp->GetHeight();
// Lock the bitmap.
BitmapData bitmapData;
Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);
// Get a pointer to the bitmap data.
DWORD* image_bits = (DWORD*)bitmapData.Scan0;
// Call the function for each pixel in the image.
parallel_for (0, height, [&, width](int y)
{
for (int x = 0; x < width; ++x)
{
// Get the current pixel value.
DWORD* curr_pixel = image_bits + (y * width) + x;
// Call the function.
f(*curr_pixel);
}
});
// Unlock the bitmap.
bmp->UnlockBits(&bitmapData);
}
As seguintes funções, Grayscale, Sepiatone, ColorMask, e Darken, chame a função de ProcessImage para converter o valor da cor de cada x em um objeto de Bitmap . Cada uma dessas funções a seguir usa uma expressão de lambda para definir a transformação cor de um x.
// Converts the given image to grayscale.
Bitmap* Grayscale(Bitmap* bmp)
{
ProcessImage(bmp,
[](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
// Set each color component to the average of
// the original components.
BYTE c = (static_cast<WORD>(r) + g + b) / 3;
color = MakeColor(c, c, c);
}
);
return bmp;
}
// Applies sepia toning to the provided image.
Bitmap* Sepiatone(Bitmap* bmp)
{
ProcessImage(bmp,
[](DWORD& color) {
BYTE r0, g0, b0;
GetRGB(color, r0, g0, b0);
WORD r1 = static_cast<WORD>((r0 * .393) + (g0 *.769) + (b0 * .189));
WORD g1 = static_cast<WORD>((r0 * .349) + (g0 *.686) + (b0 * .168));
WORD b1 = static_cast<WORD>((r0 * .272) + (g0 *.534) + (b0 * .131));
color = MakeColor(min(0xff, r1), min(0xff, g1), min(0xff, b1));
}
);
return bmp;
}
// Applies the given color mask to each pixel in the provided image.
Bitmap* ColorMask(Bitmap* bmp, DWORD mask)
{
ProcessImage(bmp,
[mask](DWORD& color) {
color = color & mask;
}
);
return bmp;
}
// Darkens the provided image by the given amount.
Bitmap* Darken(Bitmap* bmp, unsigned int percent)
{
if (percent > 100)
throw invalid_argument("Darken: percent must less than 100.");
double factor = percent / 100.0;
ProcessImage(bmp,
[factor](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
r = static_cast<BYTE>(factor*r);
g = static_cast<BYTE>(factor*g);
b = static_cast<BYTE>(factor*b);
color = MakeColor(r, g, b);
}
);
return bmp;
}
A seguinte função, GetColorDominance, também chama a função de ProcessImage . Porém, em vez de alterar o valor de cada cor, essa função usa objetos de concurrency::combinable para computar se o componente, verde, vermelho ou azul de cor corresponde ao mestre a imagem.
// Determines which color component (red, green, or blue) is most dominant
// in the given image and returns a corresponding color mask.
DWORD GetColorDominance(Bitmap* bmp)
{
// The ProcessImage function processes the image in parallel.
// The following combinable objects enable the callback function
// to increment the color counts without using a lock.
combinable<unsigned int> reds;
combinable<unsigned int> greens;
combinable<unsigned int> blues;
ProcessImage(bmp,
[&](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
if (r >= g && r >= b)
reds.local()++;
else if (g >= r && g >= b)
greens.local()++;
else
blues.local()++;
}
);
// Determine which color is dominant and return the corresponding
// color mask.
unsigned int r = reds.combine(plus<unsigned int>());
unsigned int g = greens.combine(plus<unsigned int>());
unsigned int b = blues.combine(plus<unsigned int>());
if (r + r >= g + b)
return 0x00ff0000;
else if (g + g >= r + b)
return 0x0000ff00;
else
return 0x000000ff;
}
A seguinte função, GetEncoderClsid, recupera o identificador da classe para o determinado tipo MIME de um codificador. O aplicativo usa essa função para recuperar o codificador para um bitmap.
// Retrieves the class identifier for the given MIME type of an encoder.
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
UINT num = 0; // number of image encoders
UINT size = 0; // size of the image encoder array in bytes
ImageCodecInfo* pImageCodecInfo = nullptr;
GetImageEncodersSize(&num, &size);
if(size == 0)
return -1; // Failure
pImageCodecInfo = (ImageCodecInfo*)(malloc(size));
if(pImageCodecInfo == nullptr)
return -1; // Failure
GetImageEncoders(num, size, pImageCodecInfo);
for(UINT j = 0; j < num; ++j)
{
if( wcscmp(pImageCodecInfo[j].MimeType, format) == 0 )
{
*pClsid = pImageCodecInfo[j].Clsid;
free(pImageCodecInfo);
return j; // Success
}
}
free(pImageCodecInfo);
return -1; // Failure
}
[Superior]
Criando a rede de processamento de imagem
Esta seção descreve como criar uma rede dos blocos assíncronas de mensagem que executam o processamento de imagem em cada foto de JPEG(.jpg) em um diretório especificado. A rede executa as seguintes operações de processamento com:
Para qualquer imagem que é criada por Tom, converta à escala de cinza.
Para qualquer imagem que tenha vermelho como a cor dominante, remova os componentes verde e azul e escureça-os em.
Para qualquer outra imagem, aplique a tonificação de sepia.
A rede aplica apenas a primeira operação de processamento que corresponde a uma destas condições. Por exemplo, se uma imagem é criada por Tom e red como a cor dominante, a imagem é convertida apenas à escala de cinza.
Depois que a cada rede executa a operação de processamento, salva a imagem no disco como um arquivo de bitmap (.bmp).
As etapas a seguir mostram como criar uma função que implementa essa rede de processamento de imagem e rede que se aplicam a cada foto de JPEG em um diretório especificado.
Para criar a rede de processamento de imagem
Crie uma função, ProcessImages, que usa o nome de um diretório no disco.
void ProcessImages(const wstring& directory) { }
Na função de ProcessImages , crie uma variável de countdown_event . A classe de countdown_event é exibida mais adiante neste passo a passo.
// Holds the number of active image processing operations and // signals to the main thread that processing is complete. countdown_event active(0);
Crie um objeto de std::map que associa um objeto de Bitmap pelo nome de arquivo original.
// Maps Bitmap objects to their original file names. map<Bitmap*, wstring> bitmap_file_names;
Adicione o código a seguir para definir os membros da rede de processamento.
// // Create the nodes of the network. // // Loads Bitmap objects from disk. transformer<wstring, Bitmap*> load_bitmap( [&](wstring file_name) -> Bitmap* { Bitmap* bmp = new Bitmap(file_name.c_str()); if (bmp != nullptr) bitmap_file_names.insert(make_pair(bmp, file_name)); return bmp; } ); // Holds loaded Bitmap objects. unbounded_buffer<Bitmap*> loaded_bitmaps; // Converts images that are authored by Tom to grayscale. transformer<Bitmap*, Bitmap*> grayscale( [](Bitmap* bmp) { return Grayscale(bmp); }, nullptr, [](Bitmap* bmp) -> bool { if (bmp == nullptr) return false; // Retrieve the artist name from metadata. UINT size = bmp->GetPropertyItemSize(PropertyTagArtist); if (size == 0) // Image does not have the Artist property. return false; PropertyItem* artistProperty = (PropertyItem*) malloc(size); bmp->GetPropertyItem(PropertyTagArtist, size, artistProperty); string artist(reinterpret_cast<char*>(artistProperty->value)); free(artistProperty); return (artist.find("Tom ") == 0); } ); // Removes the green and blue color components from images that have red as // their dominant color. transformer<Bitmap*, Bitmap*> colormask( [](Bitmap* bmp) { return ColorMask(bmp, 0x00ff0000); }, nullptr, [](Bitmap* bmp) -> bool { if (bmp == nullptr) return false; return (GetColorDominance(bmp) == 0x00ff0000); } ); // Darkens the color of the provided Bitmap object. transformer<Bitmap*, Bitmap*> darken([](Bitmap* bmp) { return Darken(bmp, 50); }); // Applies sepia toning to the remaining images. transformer<Bitmap*, Bitmap*> sepiatone( [](Bitmap* bmp) { return Sepiatone(bmp); }, nullptr, [](Bitmap* bmp) -> bool { return bmp != nullptr; } ); // Saves Bitmap objects to disk. transformer<Bitmap*, Bitmap*> save_bitmap([&](Bitmap* bmp) -> Bitmap* { // Replace the file extension with .bmp. wstring file_name = bitmap_file_names[bmp]; file_name.replace(file_name.rfind(L'.') + 1, 3, L"bmp"); // Save the processed image. CLSID bmpClsid; GetEncoderClsid(L"image/bmp", &bmpClsid); bmp->Save(file_name.c_str(), &bmpClsid); return bmp; }); // Deletes Bitmap objects. transformer<Bitmap*, Bitmap*> delete_bitmap([](Bitmap* bmp) -> Bitmap* { delete bmp; return nullptr; }); // Decrements the event counter. call<Bitmap*> decrement([&](Bitmap* _) { active.signal(); });
Adicione o código a seguir para conectar-se a rede.
// // Connect the network. // load_bitmap.link_target(&loaded_bitmaps); loaded_bitmaps.link_target(&grayscale); loaded_bitmaps.link_target(&colormask); colormask.link_target(&darken); loaded_bitmaps.link_target(&sepiatone); loaded_bitmaps.link_target(&decrement); grayscale.link_target(&save_bitmap); darken.link_target(&save_bitmap); sepiatone.link_target(&save_bitmap); save_bitmap.link_target(&delete_bitmap); delete_bitmap.link_target(&decrement);
Adicione o seguinte código para enviar ao início da rede o caminho completo de todos os arquivos de JPEG no diretório.
// Traverse all files in the directory. wstring searchPattern = directory; searchPattern.append(L"\\*"); WIN32_FIND_DATA fileFindData; HANDLE hFind = FindFirstFile(searchPattern.c_str(), &fileFindData); if (hFind == INVALID_HANDLE_VALUE) return; do { if (!(fileFindData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) { wstring file = fileFindData.cFileName; // Process only JPEG files. if (file.rfind(L".jpg") == file.length() - 4) { // Form the full path to the file. wstring full_path(directory); full_path.append(L"\\"); full_path.append(file); // Increment the count of work items. active.add_count(); // Send the path name to the network. send(load_bitmap, full_path); } } } while (FindNextFile(hFind, &fileFindData) != 0); FindClose(hFind);
Aguarde a variável de countdown_event para alcançar zero.
// Wait for all operations to finish. active.wait();
A tabela a seguir descreve os membros de rede.
Membro |
Descrição |
---|---|
load_bitmap |
Um objeto de concurrency::transformer que carrega um objeto de Bitmap de disco e adiciona uma entrada ao objeto de map para associar a imagem com seu nome de arquivo original. |
loaded_bitmaps |
Um objeto de concurrency::unbounded_buffer que envia as imagens carregadas ao processamento de imagem filtros. |
grayscale |
Um objeto de transformer que converte de imagens que são criadas por Tom à escala de cinza. Usa os metadados de imagem para determinar o autor. |
colormask |
Um objeto de transformer que remove os componentes verde e azul de cor das imagens que têm vermelho como a cor dominante. |
darken |
Um objeto de transformer esmaece que as imagens que têm vermelho como a cor dominante. |
sepiatone |
Um objeto de transformer que aplica o sepia que tonifica imagens que não são criadas por Tom e não são frequente vermelhas. |
save_bitmap |
Um objeto de transformer que salva image processado no disco como um bitmap. save_bitmap recupera o nome de arquivo original do objeto de map e alterar sua extensão de nome de arquivo como .bmp. |
delete_bitmap |
Um objeto de transformer que libera memória para as imagens. |
decrement |
Um objeto de concurrency::call que atue como o nó terminal na rede. Diminui o objeto de countdown_event ao sinal para o aplicativo principal que uma imagem esteve processada. |
O buffer de mensagem de loaded_bitmaps é importante porque, como um objeto de unbounded_buffer , oferece objetos de Bitmap a vários destinatários. Quando um bloco de destino aceita um objeto de Bitmap , o objeto de unbounded_buffer não oferece que objeto de Bitmap com qualquer outro destinos. Consequentemente, a ordem na qual você vincular objetos a um objeto de unbounded_buffer é importante. grayscale, colormask, e a mensagem de sepiatone bloqueiam usam cada um filtro só aceitar determinado Bitmap objeto. O buffer de mensagem de decrement é importante um destino de buffer de mensagem de loaded_bitmaps como aceita todos os objetos de Bitmap que são rejeitados por outros buffers de mensagem. Um objeto de unbounded_buffer é necessário propagar mensagens na ordem. Consequentemente, blocos de um objeto de unbounded_buffer até um novo pacote de destino ele esteja vinculado e aceitar a mensagem se nenhum pacote atual de destino aceita essa mensagem.
Se seu aplicativo requer que os blocos de mensagens múltiplas processa a mensagem, em vez de apenas um bloco de mensagem que aceita primeiro a mensagem, você pode usar outra mensagem em blocos, como overwrite_buffer. A classe de overwrite_buffer contém uma mensagem de cada vez, mas propaga essa mensagem a cada um de seus destinos.
A ilustração a seguir mostra a rede de processamento de imagem:
O objeto de countdown_event neste exemplo permite a rede de processamento de imagem para informar o aplicativo principal quando todas as imagens foram processadas. A classe de countdown_event usa um objeto de concurrency::event para sinalizar quando alcança o contador zero de um valor. O aplicativo principal incrementa o contador sempre que envia um nome de arquivo na rede. O nó terminal de rede diminui o contador depois que cada foto foi processada. Depois que o aplicativo principal atravessa o diretório especificado, aguarda o objeto de countdown_event para sinalizar que seu contador atingiu zero.
O exemplo a seguir mostra a classe de countdown_event :
// A synchronization primitive that is signaled when its
// count reaches zero.
class countdown_event
{
public:
countdown_event(unsigned int count = 0)
: _current(static_cast<long>(count))
{
// Set the event if the initial count is zero.
if (_current == 0L)
_event.set();
}
// Decrements the event counter.
void signal() {
if(InterlockedDecrement(&_current) == 0L) {
_event.set();
}
}
// Increments the event counter.
void add_count() {
if(InterlockedIncrement(&_current) == 1L) {
_event.reset();
}
}
// Blocks the current context until the event is set.
void wait() {
_event.wait();
}
private:
// The current count.
volatile long _current;
// The event that is set when the counter reaches zero.
event _event;
// Disable copy constructor.
countdown_event(const countdown_event&);
// Disable assignment.
countdown_event const & operator=(countdown_event const&);
};
[Superior]
O Exemplo Completo
O código a seguir mostra o exemplo completo. A função de wmain gerencia a biblioteca de GDI+ e chama a função de ProcessImages para processar os arquivos de JPEG no diretório de Imagens de exemplo .
// image-processing-network.cpp
// compile with: /DUNICODE /EHsc image-processing-network.cpp /link gdiplus.lib
#include <windows.h>
#include <gdiplus.h>
#include <iostream>
#include <map>
#include <agents.h>
#include <ppl.h>
using namespace concurrency;
using namespace Gdiplus;
using namespace std;
// Retrieves the red, green, and blue components from the given
// color value.
void GetRGB(DWORD color, BYTE& r, BYTE& g, BYTE& b)
{
r = static_cast<BYTE>((color & 0x00ff0000) >> 16);
g = static_cast<BYTE>((color & 0x0000ff00) >> 8);
b = static_cast<BYTE>((color & 0x000000ff));
}
// Creates a single color value from the provided red, green,
// and blue components.
DWORD MakeColor(BYTE r, BYTE g, BYTE b)
{
return (r<<16) | (g<<8) | (b);
}
// Calls the provided function for each pixel in a Bitmap object.
void ProcessImage(Bitmap* bmp, const function<void (DWORD&)>& f)
{
int width = bmp->GetWidth();
int height = bmp->GetHeight();
// Lock the bitmap.
BitmapData bitmapData;
Rect rect(0, 0, bmp->GetWidth(), bmp->GetHeight());
bmp->LockBits(&rect, ImageLockModeWrite, PixelFormat32bppRGB, &bitmapData);
// Get a pointer to the bitmap data.
DWORD* image_bits = (DWORD*)bitmapData.Scan0;
// Call the function for each pixel in the image.
parallel_for (0, height, [&, width](int y)
{
for (int x = 0; x < width; ++x)
{
// Get the current pixel value.
DWORD* curr_pixel = image_bits + (y * width) + x;
// Call the function.
f(*curr_pixel);
}
});
// Unlock the bitmap.
bmp->UnlockBits(&bitmapData);
}
// Converts the given image to grayscale.
Bitmap* Grayscale(Bitmap* bmp)
{
ProcessImage(bmp,
[](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
// Set each color component to the average of
// the original components.
BYTE c = (static_cast<WORD>(r) + g + b) / 3;
color = MakeColor(c, c, c);
}
);
return bmp;
}
// Applies sepia toning to the provided image.
Bitmap* Sepiatone(Bitmap* bmp)
{
ProcessImage(bmp,
[](DWORD& color) {
BYTE r0, g0, b0;
GetRGB(color, r0, g0, b0);
WORD r1 = static_cast<WORD>((r0 * .393) + (g0 *.769) + (b0 * .189));
WORD g1 = static_cast<WORD>((r0 * .349) + (g0 *.686) + (b0 * .168));
WORD b1 = static_cast<WORD>((r0 * .272) + (g0 *.534) + (b0 * .131));
color = MakeColor(min(0xff, r1), min(0xff, g1), min(0xff, b1));
}
);
return bmp;
}
// Applies the given color mask to each pixel in the provided image.
Bitmap* ColorMask(Bitmap* bmp, DWORD mask)
{
ProcessImage(bmp,
[mask](DWORD& color) {
color = color & mask;
}
);
return bmp;
}
// Darkens the provided image by the given amount.
Bitmap* Darken(Bitmap* bmp, unsigned int percent)
{
if (percent > 100)
throw invalid_argument("Darken: percent must less than 100.");
double factor = percent / 100.0;
ProcessImage(bmp,
[factor](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
r = static_cast<BYTE>(factor*r);
g = static_cast<BYTE>(factor*g);
b = static_cast<BYTE>(factor*b);
color = MakeColor(r, g, b);
}
);
return bmp;
}
// Determines which color component (red, green, or blue) is most dominant
// in the given image and returns a corresponding color mask.
DWORD GetColorDominance(Bitmap* bmp)
{
// The ProcessImage function processes the image in parallel.
// The following combinable objects enable the callback function
// to increment the color counts without using a lock.
combinable<unsigned int> reds;
combinable<unsigned int> greens;
combinable<unsigned int> blues;
ProcessImage(bmp,
[&](DWORD& color) {
BYTE r, g, b;
GetRGB(color, r, g, b);
if (r >= g && r >= b)
reds.local()++;
else if (g >= r && g >= b)
greens.local()++;
else
blues.local()++;
}
);
// Determine which color is dominant and return the corresponding
// color mask.
unsigned int r = reds.combine(plus<unsigned int>());
unsigned int g = greens.combine(plus<unsigned int>());
unsigned int b = blues.combine(plus<unsigned int>());
if (r + r >= g + b)
return 0x00ff0000;
else if (g + g >= r + b)
return 0x0000ff00;
else
return 0x000000ff;
}
// Retrieves the class identifier for the given MIME type of an encoder.
int GetEncoderClsid(const WCHAR* format, CLSID* pClsid)
{
UINT num = 0; // number of image encoders
UINT size = 0; // size of the image encoder array in bytes
ImageCodecInfo* pImageCodecInfo = nullptr;
GetImageEncodersSize(&num, &size);
if(size == 0)
return -1; // Failure
pImageCodecInfo = (ImageCodecInfo*)(malloc(size));
if(pImageCodecInfo == nullptr)
return -1; // Failure
GetImageEncoders(num, size, pImageCodecInfo);
for(UINT j = 0; j < num; ++j)
{
if( wcscmp(pImageCodecInfo[j].MimeType, format) == 0 )
{
*pClsid = pImageCodecInfo[j].Clsid;
free(pImageCodecInfo);
return j; // Success
}
}
free(pImageCodecInfo);
return -1; // Failure
}
// A synchronization primitive that is signaled when its
// count reaches zero.
class countdown_event
{
public:
countdown_event(unsigned int count = 0)
: _current(static_cast<long>(count))
{
// Set the event if the initial count is zero.
if (_current == 0L)
_event.set();
}
// Decrements the event counter.
void signal() {
if(InterlockedDecrement(&_current) == 0L) {
_event.set();
}
}
// Increments the event counter.
void add_count() {
if(InterlockedIncrement(&_current) == 1L) {
_event.reset();
}
}
// Blocks the current context until the event is set.
void wait() {
_event.wait();
}
private:
// The current count.
volatile long _current;
// The event that is set when the counter reaches zero.
event _event;
// Disable copy constructor.
countdown_event(const countdown_event&);
// Disable assignment.
countdown_event const & operator=(countdown_event const&);
};
// Demonstrates how to set up a message network that performs a series of
// image processing operations on each JPEG image in the given directory and
// saves each altered image as a Windows bitmap.
void ProcessImages(const wstring& directory)
{
// Holds the number of active image processing operations and
// signals to the main thread that processing is complete.
countdown_event active(0);
// Maps Bitmap objects to their original file names.
map<Bitmap*, wstring> bitmap_file_names;
//
// Create the nodes of the network.
//
// Loads Bitmap objects from disk.
transformer<wstring, Bitmap*> load_bitmap(
[&](wstring file_name) -> Bitmap* {
Bitmap* bmp = new Bitmap(file_name.c_str());
if (bmp != nullptr)
bitmap_file_names.insert(make_pair(bmp, file_name));
return bmp;
}
);
// Holds loaded Bitmap objects.
unbounded_buffer<Bitmap*> loaded_bitmaps;
// Converts images that are authored by Tom to grayscale.
transformer<Bitmap*, Bitmap*> grayscale(
[](Bitmap* bmp) {
return Grayscale(bmp);
},
nullptr,
[](Bitmap* bmp) -> bool {
if (bmp == nullptr)
return false;
// Retrieve the artist name from metadata.
UINT size = bmp->GetPropertyItemSize(PropertyTagArtist);
if (size == 0)
// Image does not have the Artist property.
return false;
PropertyItem* artistProperty = (PropertyItem*) malloc(size);
bmp->GetPropertyItem(PropertyTagArtist, size, artistProperty);
string artist(reinterpret_cast<char*>(artistProperty->value));
free(artistProperty);
return (artist.find("Tom ") == 0);
}
);
// Removes the green and blue color components from images that have red as
// their dominant color.
transformer<Bitmap*, Bitmap*> colormask(
[](Bitmap* bmp) {
return ColorMask(bmp, 0x00ff0000);
},
nullptr,
[](Bitmap* bmp) -> bool {
if (bmp == nullptr)
return false;
return (GetColorDominance(bmp) == 0x00ff0000);
}
);
// Darkens the color of the provided Bitmap object.
transformer<Bitmap*, Bitmap*> darken([](Bitmap* bmp) {
return Darken(bmp, 50);
});
// Applies sepia toning to the remaining images.
transformer<Bitmap*, Bitmap*> sepiatone(
[](Bitmap* bmp) {
return Sepiatone(bmp);
},
nullptr,
[](Bitmap* bmp) -> bool { return bmp != nullptr; }
);
// Saves Bitmap objects to disk.
transformer<Bitmap*, Bitmap*> save_bitmap([&](Bitmap* bmp) -> Bitmap* {
// Replace the file extension with .bmp.
wstring file_name = bitmap_file_names[bmp];
file_name.replace(file_name.rfind(L'.') + 1, 3, L"bmp");
// Save the processed image.
CLSID bmpClsid;
GetEncoderClsid(L"image/bmp", &bmpClsid);
bmp->Save(file_name.c_str(), &bmpClsid);
return bmp;
});
// Deletes Bitmap objects.
transformer<Bitmap*, Bitmap*> delete_bitmap([](Bitmap* bmp) -> Bitmap* {
delete bmp;
return nullptr;
});
// Decrements the event counter.
call<Bitmap*> decrement([&](Bitmap* _) {
active.signal();
});
//
// Connect the network.
//
load_bitmap.link_target(&loaded_bitmaps);
loaded_bitmaps.link_target(&grayscale);
loaded_bitmaps.link_target(&colormask);
colormask.link_target(&darken);
loaded_bitmaps.link_target(&sepiatone);
loaded_bitmaps.link_target(&decrement);
grayscale.link_target(&save_bitmap);
darken.link_target(&save_bitmap);
sepiatone.link_target(&save_bitmap);
save_bitmap.link_target(&delete_bitmap);
delete_bitmap.link_target(&decrement);
// Traverse all files in the directory.
wstring searchPattern = directory;
searchPattern.append(L"\\*");
WIN32_FIND_DATA fileFindData;
HANDLE hFind = FindFirstFile(searchPattern.c_str(), &fileFindData);
if (hFind == INVALID_HANDLE_VALUE)
return;
do
{
if (!(fileFindData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY))
{
wstring file = fileFindData.cFileName;
// Process only JPEG files.
if (file.rfind(L".jpg") == file.length() - 4)
{
// Form the full path to the file.
wstring full_path(directory);
full_path.append(L"\\");
full_path.append(file);
// Increment the count of work items.
active.add_count();
// Send the path name to the network.
send(load_bitmap, full_path);
}
}
}
while (FindNextFile(hFind, &fileFindData) != 0);
FindClose(hFind);
// Wait for all operations to finish.
active.wait();
}
int wmain()
{
GdiplusStartupInput gdiplusStartupInput;
ULONG_PTR gdiplusToken;
// Initialize GDI+.
GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, nullptr);
// Perform image processing.
// TODO: Change this path if necessary.
ProcessImages(L"C:\\Users\\Public\\Pictures\\Sample Pictures");
// Shutdown GDI+.
GdiplusShutdown(gdiplusToken);
}
A ilustração a seguir mostra a saída de exemplo. Cada foto de origem está acima da imagem alterada correspondentes.
Farol é criado por Alphin Tom e como consequência convertido na escala de cinza. Crisântemo, Deserto, Koala, e Tulips têm vermelho como a cor dominante e tem como consequência os componentes da cor verde e azul e são removidos escurecidos. Hortênsias, Medusa, e correspondência de Penguins os critérios padrão e são consequentemente sepia tonificado.
[Superior]
Compilando o código
Copie o código de exemplo e cole-o em um projeto do Visual Studio, ou cole-o em um arquivo chamado image-processing-network.cpp e execute o comando a seguir em uma janela de prompt de comando do Visual Studio.
cl.exe /DUNICODE /EHsc image-processing-network.cpp /link gdiplus.lib
Consulte também
Outros recursos
Instruções passo a passo do Tempo de Execução de Simultaneidade