conj
Returns the complex conjugate of a complex number.
template<class Type>
complex<Type> conj(
const complex<Type>& _ComplexNum
);
Parameters
- _ComplexNum
The complex number whose complex conjugate is being returned.
Return Value
The complex conjugate of the input complex number.
Remarks
The complex conjugate of a complex number a + bi is a – bi. The product of a complex number and its conjugate is the norm of the number a2 + b2.
Example
// complex_conj.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
complex <double> c1 ( 4.0 , 3.0 );
cout << "The complex number c1 = " << c1 << endl;
double dr1 = real ( c1 );
cout << "The real part of c1 is real ( c1 ) = "
<< dr1 << "." << endl;
double di1 = imag ( c1 );
cout << "The imaginary part of c1 is imag ( c1 ) = "
<< di1 << "." << endl;
complex <double> c2 = conj ( c1 );
cout << "The complex conjugate of c1 is c2 = conj ( c1 )= "
<< c2 << endl;
double dr2 = real ( c2 );
cout << "The real part of c2 is real ( c2 ) = "
<< dr2 << "." << endl;
double di2 = imag ( c2 );
cout << "The imaginary part of c2 is imag ( c2 ) = "
<< di2 << "." << endl;
// The real part of the product of a complex number
// and its conjugate is the norm of the number
complex <double> c3 = c1 * c2;
cout << "The norm of (c1 * conj (c1) ) is c1 * c2 = "
<< real( c3 ) << endl;
}
The complex number c1 = (4,3) The real part of c1 is real ( c1 ) = 4. The imaginary part of c1 is imag ( c1 ) = 3. The complex conjugate of c1 is c2 = conj ( c1 )= (4,-3) The real part of c2 is real ( c2 ) = 4. The imaginary part of c2 is imag ( c2 ) = -3. The norm of (c1 * conj (c1) ) is c1 * c2 = 25
Requirements
Header: <complex>
Namespace: std