Nota
O acesso a esta página requer autorização. Podes tentar iniciar sessão ou mudar de diretório.
O acesso a esta página requer autorização. Podes tentar mudar de diretório.
Usage
microsoftml.rx_neural_network(formula: str,
data: [revoscalepy.datasource.RxDataSource.RxDataSource,
pandas.core.frame.DataFrame], method: ['binary', 'multiClass',
'regression'] = 'binary', num_hidden_nodes: int = 100,
num_iterations: int = 100,
optimizer: [<function adadelta_optimizer at 0x0000007156EAC048>,
<function sgd_optimizer at 0x0000007156E9FB70>] = {'Name': 'SgdOptimizer',
'Settings': {}}, net_definition: str = None,
init_wts_diameter: float = 0.1, max_norm: float = 0,
acceleration: [<function avx_math at 0x0000007156E9FEA0>,
<function clr_math at 0x0000007156EAC158>,
<function gpu_math at 0x0000007156EAC1E0>,
<function mkl_math at 0x0000007156EAC268>,
<function sse_math at 0x0000007156EAC2F0>] = {'Name': 'AvxMath',
'Settings': {}}, mini_batch_size: int = 1, normalize: ['No',
'Warn', 'Auto', 'Yes'] = 'Auto', ml_transforms: list = None,
ml_transform_vars: list = None, row_selection: str = None,
transforms: dict = None, transform_objects: dict = None,
transform_function: str = None,
transform_variables: list = None,
transform_packages: list = None,
transform_environment: dict = None, blocks_per_read: int = None,
report_progress: int = None, verbose: int = 1,
ensemble: microsoftml.modules.ensemble.EnsembleControl = None,
compute_context: revoscalepy.computecontext.RxComputeContext.RxComputeContext = None)
Description
Redes neuronais para modelação de regressão e para classificação binária e multi-classe.
Detalhes
Uma rede neural é uma classe de modelos de previsão inspirados no cérebro humano. Uma rede neural pode ser representada como um grafo direcionado ponderado. Cada nó no grafo é chamado neurónio. Os neurónios no gráfico estão organizados em camadas, onde os neurónios de uma camada estão ligados por uma aresta ponderada (os pesos podem ser 0 ou números positivos) aos neurónios da camada seguinte. A primeira camada chama-se camada de entrada, e cada neurónio na camada de entrada corresponde a uma das características. A última camada da função chama-se camada de saída. Assim, no caso das redes neuronais binárias, contém dois neurónios de saída, um para cada classe, cujos valores são as probabilidades de pertencerem a cada classe. As restantes camadas são chamadas camadas ocultas. Os valores dos neurónios nas camadas ocultas e na camada de saída são definidos calculando a soma ponderada dos valores dos neurónios da camada anterior e aplicando uma função de ativação a essa soma ponderada. Um modelo de rede neural é definido pela estrutura do seu grafo (nomeadamente, o número de camadas ocultas e o número de neurónios em cada camada oculta), a escolha da função de ativação e os pesos nas arestas do grafo. O algoritmo da rede neural tenta aprender os pesos ótimos nas arestas com base nos dados de treino.
Embora as redes neuronais sejam amplamente conhecidas pela utilização em aprendizagem profunda e modelação de problemas complexos como o reconhecimento de imagem, também são facilmente adaptadas a problemas de regressão. Qualquer classe de modelos estatísticos pode ser considerada uma rede neural se utilizarem pesos adaptativos e puderem aproximar funções não lineares das suas entradas. A regressão de redes neuronais é especialmente adequada para problemas onde um modelo de regressão mais tradicional não consegue encaixar uma solução.
Arguments
fórmula
A fórmula descrita em revoscalepy.rx_formula.
Termos de interação e F() não são atualmente suportados no microsoftml.
dados
Um objeto fonte de dados ou uma cadeia de caracteres que especifica um ficheiro .xdf ou um objeto data frame.
método
Uma cadeia de caracteres que indica o tipo de Árvore Rápida:
"binary"para a rede neural de classificação binária padrão."multiClass"para rede neural de classificação multi-classe."regression"para uma rede neural de regressão.
num_hidden_nodes
O número padrão de nós ocultos na rede neural. O valor padrão é 100.
num_iterations
O número de iterações no conjunto completo de treino. O valor padrão é 100.
optimizer
Uma lista que especifica o sgd algoritmo de otimização de ou adaptive . Esta lista pode ser criada usando sgd_optimizer ou adadelta_optimizer.
O valor predefinido é sgd.
net_definition
A definição Net# da estrutura da rede neural. Para mais informações sobre a linguagem Net#, consulte o Guia de Referência
init_wts_diameter
Define o diâmetro inicial dos pesos que especifica o intervalo a partir do qual os valores são retirados para os pesos iniciais de aprendizagem. Os pesos são inicializados aleatoriamente dentro deste intervalo. O valor padrão é 0,1.
max_norm
Especifica um limite superior para restringir a norma do vetor de peso recebido em cada unidade oculta. Isto pode ser muito importante em redes neurais de maximização, bem como em casos em que o treino produz pesos ilimitados.
Aceleração
Especifica o tipo de aceleração por hardware a usar. Os valores possíveis são "sse_math" e "gpu_math". Para a aceleração da GPU, recomenda-se usar um miniBatchSize superior a um. Se quiser usar a aceleração da GPU, são necessários passos manuais adicionais de configuração:
Descarregue e instale o NVidia CUDA Toolkit 6.5 (CUDA Toolkit).
Descarregue e instale a Biblioteca NVidia cuDNN v2 (Biblioteca cudnn).
Encontre o diretório libs do pacote microsoftml chamando
import microsoftml, os,os.path.join(microsoftml.__path__[0], "mxLibs").Copie cublas64_65.dll, cudart64_65.dll e cusparse64_65.dll do CUDA Toolkit 6.5 para o diretório libs do pacote microsoftml.
Copie cudnn64_65.dll da biblioteca cuDNN v2 para o diretório libs do pacote microsoftml.
mini_batch_size
Define o tamanho do mini-lote. Os valores recomendados situam-se entre 1 e 256. Este parâmetro só é usado quando a aceleração é GPU. Definir este parâmetro para um valor mais alto melhora a velocidade do treino, mas pode afetar negativamente a precisão. O valor padrão é 1.
normalizar
Especifica o tipo de normalização automática utilizada:
"Warn": se for necessária normalização, ela é realizada automaticamente. Esta é a escolha padrão."No": não é realizada qualquer normalização."Yes": a normalização é realizada."Auto": se for necessária normalização, é exibida uma mensagem de aviso, mas a normalização não é realizada.
A normalização reescala intervalos de dados díspares para uma escala padrão. A escalabilidade de características assegura que as distâncias entre pontos de dados são proporcionais e permite que vários métodos de otimização, como a descida gradiente, convergam muito mais rapidamente. Se for realizada a normalização, é utilizado um MaxMin normalizador. Normaliza valores num intervalo [a, b] onde -1 <= a <= 0 e 0 <= b <= 1 e b - a = 1. Este normalizador preserva a esparsidade ao mapear zero para zero.
ml_transforms
Especifica uma lista de transformações MicrosoftML a realizar nos dados antes do treino ou Nenhuma se não forem realizadas transformações. Veja featurize_text, categorical, e categorical_hash, para transformações que são suportadas.
Estas transformações são realizadas após quaisquer transformações em Python especificadas.
O valor predefinido é None.
ml_transform_vars
Especifica um vetor de caracteres com nomes de variáveis a serem usados em ml_transforms ou Nenhum se não for necessário usar nenhum.
O valor predefinido é None.
row_selection
NÃO SUPORTADO. Especifica as linhas (observações) do conjunto de dados que serão usadas pelo modelo com o nome de uma variável lógica do conjunto de dados (entre aspas) ou com uma expressão lógica usando variáveis do conjunto de dados. Por exemplo:
row_selection = "old"só usará observações em que o valor da variáveloldéTrue.row_selection = (age > 20) & (age < 65) & (log(income) > 10)só utiliza observações em que o valor daagevariável está entre 20 e 65 e o valorlogdaincomevariável é superior a 10.
A seleção de linhas é realizada após o processamento de quaisquer transformações de dados (ver os argumentos transforms ou transform_function). Como em todas as expressões, row_selection pode ser definido fora da chamada de função usando a expression função.
transforma
NÃO SUPORTADO. Uma expressão da forma que representa a primeira ronda de transformações de variáveis. Como em todas as expressões, transforms (ou row_selection) pode ser definido fora da chamada de função usando a expression função.
transform_objects
NÃO SUPORTADO. Uma lista nomeada que contém objetos que podem ser referenciados por transforms, transform_function, e row_selection.
transform_function
A função de transformação de variáveis.
transform_variables
Um vetor de caracteres das variáveis do conjunto de dados de entrada necessárias para a função de transformação.
transform_packages
NÃO SUPORTADO. Um vetor de caracteres que especifica pacotes Python adicionais (para além dos especificados em RxOptions.get_option("transform_packages")) a serem disponibilizados e pré-carregados para uso em funções de transformação de variáveis.
Por exemplo, aquelas definidas explicitamente em funções revoscalepy através dos argumentos e transformstransform_function ou aquelas definidas implicitamente através dos argumentos ou formularow_selection . O transform_packages argumento pode também ser Nenhum, indicando que nenhum pacote externo RxOptions.get_option("transform_packages") está pré-carregado.
transform_environment
NÃO SUPORTADO. Um ambiente definido pelo utilizador para servir como pai de todos os ambientes desenvolvidos internamente e usados para transformação de dados variáveis.
Se transform_environment = None, um novo ambiente "hash" com o pai revoscalepy.baseenvis usado em vez disso.
blocks_per_read
Especifica o número de blocos a ler para cada bloco de dados lido da fonte de dados.
report_progress
Um valor inteiro que especifica o nível de reporte sobre o progresso do processamento da linha:
0: Não há progresso reportado.1: o número de linhas processadas é impresso e atualizado.2: as linhas processadas e os tempos são reportados.3: linhas processadas e todos os tempos são reportados.
verbose
Um valor inteiro que especifica a quantidade de saída desejada.
Se 0, não é impressa nenhuma saída detalhada durante os cálculos. Valores inteiros de 1 para 4 fornecer quantidades crescentes de informação.
compute_context
Define o contexto em que os cálculos são executados, especificado com uma revoscalpy válida. RxComputeContext. Atualmente local e revoscalepy. São suportados contextos de computação RxInSqlServer .
Ensemble
Parâmetros de controlo para a montagem.
Devoluções
Um NeuralNetwork objeto com o modelo treinado.
Observação
Este algoritmo é single-threaded e não tenta carregar todo o conjunto de dados na memória.
Consulte também
adadelta_optimizer, sgd_optimizer, avx_math, , clr_math, gpu_math, mkl_mathsse_math, rx_predict.
Referências
Wikipédia: Rede neural artificial
Exemplo de classificação binária
'''
Binary Classification.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset
infert = get_dataset("infert")
import sklearn
if sklearn.__version__ < "0.18":
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
infertdf = infert.as_df()
infertdf["isCase"] = infertdf.case == 1
data_train, data_test, y_train, y_test = train_test_split(infertdf, infertdf.isCase)
forest_model = rx_neural_network(
formula=" isCase ~ age + parity + education + spontaneous + induced ",
data=data_train)
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(forest_model, data=data_test,
extra_vars_to_write=["isCase", "Score"])
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))
Output:
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 186, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math
***** Net definition *****
input Data [5];
hidden H [100] sigmoid { // Depth 1
from Data all;
}
output Result [1] sigmoid { // Depth 0
from H all;
}
***** End net definition *****
Input count: 5
Output count: 1
Output Function: Sigmoid
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 701 Weights...
Estimated Pre-training MeanError = 0.742343
Iter:1/100, MeanErr=0.680245(-8.37%), 119.87M WeightUpdates/sec
Iter:2/100, MeanErr=0.637843(-6.23%), 122.52M WeightUpdates/sec
Iter:3/100, MeanErr=0.635404(-0.38%), 122.24M WeightUpdates/sec
Iter:4/100, MeanErr=0.634980(-0.07%), 73.36M WeightUpdates/sec
Iter:5/100, MeanErr=0.635287(0.05%), 128.26M WeightUpdates/sec
Iter:6/100, MeanErr=0.634572(-0.11%), 131.05M WeightUpdates/sec
Iter:7/100, MeanErr=0.634827(0.04%), 124.27M WeightUpdates/sec
Iter:8/100, MeanErr=0.635359(0.08%), 123.69M WeightUpdates/sec
Iter:9/100, MeanErr=0.635244(-0.02%), 119.35M WeightUpdates/sec
Iter:10/100, MeanErr=0.634712(-0.08%), 127.80M WeightUpdates/sec
Iter:11/100, MeanErr=0.635105(0.06%), 122.69M WeightUpdates/sec
Iter:12/100, MeanErr=0.635226(0.02%), 98.61M WeightUpdates/sec
Iter:13/100, MeanErr=0.634977(-0.04%), 127.88M WeightUpdates/sec
Iter:14/100, MeanErr=0.634347(-0.10%), 123.25M WeightUpdates/sec
Iter:15/100, MeanErr=0.634891(0.09%), 124.27M WeightUpdates/sec
Iter:16/100, MeanErr=0.635116(0.04%), 123.06M WeightUpdates/sec
Iter:17/100, MeanErr=0.633770(-0.21%), 122.05M WeightUpdates/sec
Iter:18/100, MeanErr=0.634992(0.19%), 128.79M WeightUpdates/sec
Iter:19/100, MeanErr=0.634385(-0.10%), 122.95M WeightUpdates/sec
Iter:20/100, MeanErr=0.634752(0.06%), 127.14M WeightUpdates/sec
Iter:21/100, MeanErr=0.635043(0.05%), 123.44M WeightUpdates/sec
Iter:22/100, MeanErr=0.634845(-0.03%), 121.81M WeightUpdates/sec
Iter:23/100, MeanErr=0.634850(0.00%), 125.11M WeightUpdates/sec
Iter:24/100, MeanErr=0.634617(-0.04%), 122.18M WeightUpdates/sec
Iter:25/100, MeanErr=0.634675(0.01%), 125.69M WeightUpdates/sec
Iter:26/100, MeanErr=0.634911(0.04%), 122.44M WeightUpdates/sec
Iter:27/100, MeanErr=0.634311(-0.09%), 121.90M WeightUpdates/sec
Iter:28/100, MeanErr=0.634798(0.08%), 123.54M WeightUpdates/sec
Iter:29/100, MeanErr=0.634674(-0.02%), 127.53M WeightUpdates/sec
Iter:30/100, MeanErr=0.634546(-0.02%), 100.96M WeightUpdates/sec
Iter:31/100, MeanErr=0.634859(0.05%), 124.40M WeightUpdates/sec
Iter:32/100, MeanErr=0.634747(-0.02%), 128.21M WeightUpdates/sec
Iter:33/100, MeanErr=0.634842(0.02%), 125.82M WeightUpdates/sec
Iter:34/100, MeanErr=0.634703(-0.02%), 77.48M WeightUpdates/sec
Iter:35/100, MeanErr=0.634804(0.02%), 122.21M WeightUpdates/sec
Iter:36/100, MeanErr=0.634690(-0.02%), 112.48M WeightUpdates/sec
Iter:37/100, MeanErr=0.634654(-0.01%), 119.18M WeightUpdates/sec
Iter:38/100, MeanErr=0.634885(0.04%), 137.19M WeightUpdates/sec
Iter:39/100, MeanErr=0.634723(-0.03%), 113.80M WeightUpdates/sec
Iter:40/100, MeanErr=0.634714(0.00%), 127.50M WeightUpdates/sec
Iter:41/100, MeanErr=0.634794(0.01%), 129.54M WeightUpdates/sec
Iter:42/100, MeanErr=0.633835(-0.15%), 133.05M WeightUpdates/sec
Iter:43/100, MeanErr=0.634401(0.09%), 128.95M WeightUpdates/sec
Iter:44/100, MeanErr=0.634575(0.03%), 123.42M WeightUpdates/sec
Iter:45/100, MeanErr=0.634673(0.02%), 123.78M WeightUpdates/sec
Iter:46/100, MeanErr=0.634692(0.00%), 119.04M WeightUpdates/sec
Iter:47/100, MeanErr=0.634476(-0.03%), 122.95M WeightUpdates/sec
Iter:48/100, MeanErr=0.634583(0.02%), 97.87M WeightUpdates/sec
Iter:49/100, MeanErr=0.634706(0.02%), 121.41M WeightUpdates/sec
Iter:50/100, MeanErr=0.634564(-0.02%), 120.58M WeightUpdates/sec
Iter:51/100, MeanErr=0.634118(-0.07%), 120.17M WeightUpdates/sec
Iter:52/100, MeanErr=0.634699(0.09%), 127.27M WeightUpdates/sec
Iter:53/100, MeanErr=0.634123(-0.09%), 110.51M WeightUpdates/sec
Iter:54/100, MeanErr=0.634390(0.04%), 123.74M WeightUpdates/sec
Iter:55/100, MeanErr=0.634461(0.01%), 113.66M WeightUpdates/sec
Iter:56/100, MeanErr=0.634415(-0.01%), 118.61M WeightUpdates/sec
Iter:57/100, MeanErr=0.634453(0.01%), 114.99M WeightUpdates/sec
Iter:58/100, MeanErr=0.634478(0.00%), 104.53M WeightUpdates/sec
Iter:59/100, MeanErr=0.634010(-0.07%), 124.62M WeightUpdates/sec
Iter:60/100, MeanErr=0.633901(-0.02%), 118.93M WeightUpdates/sec
Iter:61/100, MeanErr=0.634088(0.03%), 40.46M WeightUpdates/sec
Iter:62/100, MeanErr=0.634046(-0.01%), 94.65M WeightUpdates/sec
Iter:63/100, MeanErr=0.634233(0.03%), 27.18M WeightUpdates/sec
Iter:64/100, MeanErr=0.634596(0.06%), 123.94M WeightUpdates/sec
Iter:65/100, MeanErr=0.634185(-0.06%), 125.01M WeightUpdates/sec
Iter:66/100, MeanErr=0.634469(0.04%), 119.41M WeightUpdates/sec
Iter:67/100, MeanErr=0.634333(-0.02%), 124.11M WeightUpdates/sec
Iter:68/100, MeanErr=0.634203(-0.02%), 112.68M WeightUpdates/sec
Iter:69/100, MeanErr=0.633854(-0.05%), 118.62M WeightUpdates/sec
Iter:70/100, MeanErr=0.634319(0.07%), 123.59M WeightUpdates/sec
Iter:71/100, MeanErr=0.634423(0.02%), 122.51M WeightUpdates/sec
Iter:72/100, MeanErr=0.634388(-0.01%), 126.15M WeightUpdates/sec
Iter:73/100, MeanErr=0.634230(-0.02%), 126.51M WeightUpdates/sec
Iter:74/100, MeanErr=0.634011(-0.03%), 128.32M WeightUpdates/sec
Iter:75/100, MeanErr=0.634294(0.04%), 127.48M WeightUpdates/sec
Iter:76/100, MeanErr=0.634372(0.01%), 123.51M WeightUpdates/sec
Iter:77/100, MeanErr=0.632020(-0.37%), 122.12M WeightUpdates/sec
Iter:78/100, MeanErr=0.633770(0.28%), 119.55M WeightUpdates/sec
Iter:79/100, MeanErr=0.633504(-0.04%), 124.21M WeightUpdates/sec
Iter:80/100, MeanErr=0.634154(0.10%), 125.94M WeightUpdates/sec
Iter:81/100, MeanErr=0.633491(-0.10%), 120.83M WeightUpdates/sec
Iter:82/100, MeanErr=0.634212(0.11%), 128.60M WeightUpdates/sec
Iter:83/100, MeanErr=0.634138(-0.01%), 73.58M WeightUpdates/sec
Iter:84/100, MeanErr=0.634244(0.02%), 124.08M WeightUpdates/sec
Iter:85/100, MeanErr=0.634065(-0.03%), 96.43M WeightUpdates/sec
Iter:86/100, MeanErr=0.634174(0.02%), 124.28M WeightUpdates/sec
Iter:87/100, MeanErr=0.633966(-0.03%), 125.24M WeightUpdates/sec
Iter:88/100, MeanErr=0.633989(0.00%), 130.31M WeightUpdates/sec
Iter:89/100, MeanErr=0.633767(-0.04%), 115.73M WeightUpdates/sec
Iter:90/100, MeanErr=0.633831(0.01%), 122.81M WeightUpdates/sec
Iter:91/100, MeanErr=0.633219(-0.10%), 114.91M WeightUpdates/sec
Iter:92/100, MeanErr=0.633589(0.06%), 93.29M WeightUpdates/sec
Iter:93/100, MeanErr=0.634086(0.08%), 123.31M WeightUpdates/sec
Iter:94/100, MeanErr=0.634075(0.00%), 120.99M WeightUpdates/sec
Iter:95/100, MeanErr=0.634071(0.00%), 122.49M WeightUpdates/sec
Iter:96/100, MeanErr=0.633523(-0.09%), 116.48M WeightUpdates/sec
Iter:97/100, MeanErr=0.634103(0.09%), 128.85M WeightUpdates/sec
Iter:98/100, MeanErr=0.633836(-0.04%), 123.87M WeightUpdates/sec
Iter:99/100, MeanErr=0.633772(-0.01%), 128.17M WeightUpdates/sec
Iter:100/100, MeanErr=0.633684(-0.01%), 123.65M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 0.631268
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.2454094
Elapsed time: 00:00:00.0082325
Beginning processing data.
Rows Read: 62, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0297006
Finished writing 62 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds
isCase PredictedLabel Score Probability
0 True False -0.689636 0.334114
1 True False -0.710219 0.329551
2 True False -0.712912 0.328956
3 False False -0.700765 0.331643
4 True False -0.689783 0.334081
Exemplo de classificação MultiClass
'''
MultiClass Classification.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset
iris = get_dataset("iris")
import sklearn
if sklearn.__version__ < "0.18":
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
irisdf = iris.as_df()
irisdf["Species"] = irisdf["Species"].astype("category")
data_train, data_test, y_train, y_test = train_test_split(irisdf, irisdf.Species)
model = rx_neural_network(
formula=" Species ~ Sepal_Length + Sepal_Width + Petal_Length + Petal_Width ",
method="multiClass",
data=data_train)
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(model, data=data_test,
extra_vars_to_write=["Species", "Score"])
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))
Output:
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 112, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 112, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 112, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math
***** Net definition *****
input Data [4];
hidden H [100] sigmoid { // Depth 1
from Data all;
}
output Result [3] softmax { // Depth 0
from H all;
}
***** End net definition *****
Input count: 4
Output count: 3
Output Function: SoftMax
Loss Function: LogLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 803 Weights...
Estimated Pre-training MeanError = 1.949606
Iter:1/100, MeanErr=1.937924(-0.60%), 98.43M WeightUpdates/sec
Iter:2/100, MeanErr=1.921153(-0.87%), 96.21M WeightUpdates/sec
Iter:3/100, MeanErr=1.920000(-0.06%), 95.55M WeightUpdates/sec
Iter:4/100, MeanErr=1.917267(-0.14%), 81.25M WeightUpdates/sec
Iter:5/100, MeanErr=1.917611(0.02%), 102.44M WeightUpdates/sec
Iter:6/100, MeanErr=1.918476(0.05%), 106.16M WeightUpdates/sec
Iter:7/100, MeanErr=1.916096(-0.12%), 97.85M WeightUpdates/sec
Iter:8/100, MeanErr=1.919486(0.18%), 77.99M WeightUpdates/sec
Iter:9/100, MeanErr=1.916452(-0.16%), 95.67M WeightUpdates/sec
Iter:10/100, MeanErr=1.916024(-0.02%), 102.06M WeightUpdates/sec
Iter:11/100, MeanErr=1.917155(0.06%), 99.21M WeightUpdates/sec
Iter:12/100, MeanErr=1.918543(0.07%), 99.25M WeightUpdates/sec
Iter:13/100, MeanErr=1.919120(0.03%), 85.38M WeightUpdates/sec
Iter:14/100, MeanErr=1.917713(-0.07%), 103.00M WeightUpdates/sec
Iter:15/100, MeanErr=1.917675(0.00%), 98.70M WeightUpdates/sec
Iter:16/100, MeanErr=1.917982(0.02%), 99.10M WeightUpdates/sec
Iter:17/100, MeanErr=1.916254(-0.09%), 103.41M WeightUpdates/sec
Iter:18/100, MeanErr=1.915691(-0.03%), 102.00M WeightUpdates/sec
Iter:19/100, MeanErr=1.914844(-0.04%), 86.64M WeightUpdates/sec
Iter:20/100, MeanErr=1.919268(0.23%), 94.68M WeightUpdates/sec
Iter:21/100, MeanErr=1.918748(-0.03%), 108.11M WeightUpdates/sec
Iter:22/100, MeanErr=1.917997(-0.04%), 96.33M WeightUpdates/sec
Iter:23/100, MeanErr=1.914987(-0.16%), 82.84M WeightUpdates/sec
Iter:24/100, MeanErr=1.916550(0.08%), 99.70M WeightUpdates/sec
Iter:25/100, MeanErr=1.915401(-0.06%), 96.69M WeightUpdates/sec
Iter:26/100, MeanErr=1.916092(0.04%), 101.62M WeightUpdates/sec
Iter:27/100, MeanErr=1.916381(0.02%), 98.81M WeightUpdates/sec
Iter:28/100, MeanErr=1.917414(0.05%), 102.29M WeightUpdates/sec
Iter:29/100, MeanErr=1.917316(-0.01%), 100.17M WeightUpdates/sec
Iter:30/100, MeanErr=1.916507(-0.04%), 82.09M WeightUpdates/sec
Iter:31/100, MeanErr=1.915786(-0.04%), 98.33M WeightUpdates/sec
Iter:32/100, MeanErr=1.917581(0.09%), 101.70M WeightUpdates/sec
Iter:33/100, MeanErr=1.913680(-0.20%), 79.94M WeightUpdates/sec
Iter:34/100, MeanErr=1.917264(0.19%), 102.54M WeightUpdates/sec
Iter:35/100, MeanErr=1.917377(0.01%), 100.67M WeightUpdates/sec
Iter:36/100, MeanErr=1.912060(-0.28%), 70.37M WeightUpdates/sec
Iter:37/100, MeanErr=1.917009(0.26%), 80.80M WeightUpdates/sec
Iter:38/100, MeanErr=1.916216(-0.04%), 94.56M WeightUpdates/sec
Iter:39/100, MeanErr=1.916362(0.01%), 28.22M WeightUpdates/sec
Iter:40/100, MeanErr=1.910658(-0.30%), 100.87M WeightUpdates/sec
Iter:41/100, MeanErr=1.916375(0.30%), 85.99M WeightUpdates/sec
Iter:42/100, MeanErr=1.916257(-0.01%), 102.06M WeightUpdates/sec
Iter:43/100, MeanErr=1.914505(-0.09%), 99.86M WeightUpdates/sec
Iter:44/100, MeanErr=1.914638(0.01%), 103.11M WeightUpdates/sec
Iter:45/100, MeanErr=1.915141(0.03%), 107.62M WeightUpdates/sec
Iter:46/100, MeanErr=1.915119(0.00%), 99.65M WeightUpdates/sec
Iter:47/100, MeanErr=1.915379(0.01%), 107.03M WeightUpdates/sec
Iter:48/100, MeanErr=1.912565(-0.15%), 104.78M WeightUpdates/sec
Iter:49/100, MeanErr=1.915466(0.15%), 110.43M WeightUpdates/sec
Iter:50/100, MeanErr=1.914038(-0.07%), 98.44M WeightUpdates/sec
Iter:51/100, MeanErr=1.915015(0.05%), 96.28M WeightUpdates/sec
Iter:52/100, MeanErr=1.913771(-0.06%), 89.27M WeightUpdates/sec
Iter:53/100, MeanErr=1.911621(-0.11%), 72.67M WeightUpdates/sec
Iter:54/100, MeanErr=1.914969(0.18%), 111.17M WeightUpdates/sec
Iter:55/100, MeanErr=1.913894(-0.06%), 98.68M WeightUpdates/sec
Iter:56/100, MeanErr=1.914871(0.05%), 95.41M WeightUpdates/sec
Iter:57/100, MeanErr=1.912898(-0.10%), 80.72M WeightUpdates/sec
Iter:58/100, MeanErr=1.913334(0.02%), 103.71M WeightUpdates/sec
Iter:59/100, MeanErr=1.913362(0.00%), 99.57M WeightUpdates/sec
Iter:60/100, MeanErr=1.913915(0.03%), 106.21M WeightUpdates/sec
Iter:61/100, MeanErr=1.913310(-0.03%), 112.27M WeightUpdates/sec
Iter:62/100, MeanErr=1.913395(0.00%), 50.86M WeightUpdates/sec
Iter:63/100, MeanErr=1.912814(-0.03%), 58.91M WeightUpdates/sec
Iter:64/100, MeanErr=1.911468(-0.07%), 72.06M WeightUpdates/sec
Iter:65/100, MeanErr=1.912313(0.04%), 86.34M WeightUpdates/sec
Iter:66/100, MeanErr=1.913320(0.05%), 114.39M WeightUpdates/sec
Iter:67/100, MeanErr=1.912914(-0.02%), 105.97M WeightUpdates/sec
Iter:68/100, MeanErr=1.909881(-0.16%), 105.73M WeightUpdates/sec
Iter:69/100, MeanErr=1.911649(0.09%), 105.23M WeightUpdates/sec
Iter:70/100, MeanErr=1.911192(-0.02%), 110.24M WeightUpdates/sec
Iter:71/100, MeanErr=1.912480(0.07%), 106.86M WeightUpdates/sec
Iter:72/100, MeanErr=1.909881(-0.14%), 97.28M WeightUpdates/sec
Iter:73/100, MeanErr=1.911678(0.09%), 109.57M WeightUpdates/sec
Iter:74/100, MeanErr=1.911137(-0.03%), 91.01M WeightUpdates/sec
Iter:75/100, MeanErr=1.910706(-0.02%), 99.41M WeightUpdates/sec
Iter:76/100, MeanErr=1.910869(0.01%), 84.18M WeightUpdates/sec
Iter:77/100, MeanErr=1.911643(0.04%), 105.07M WeightUpdates/sec
Iter:78/100, MeanErr=1.911438(-0.01%), 110.12M WeightUpdates/sec
Iter:79/100, MeanErr=1.909590(-0.10%), 84.16M WeightUpdates/sec
Iter:80/100, MeanErr=1.911181(0.08%), 92.30M WeightUpdates/sec
Iter:81/100, MeanErr=1.910534(-0.03%), 110.60M WeightUpdates/sec
Iter:82/100, MeanErr=1.909340(-0.06%), 54.07M WeightUpdates/sec
Iter:83/100, MeanErr=1.908275(-0.06%), 104.08M WeightUpdates/sec
Iter:84/100, MeanErr=1.910364(0.11%), 107.19M WeightUpdates/sec
Iter:85/100, MeanErr=1.910286(0.00%), 102.55M WeightUpdates/sec
Iter:86/100, MeanErr=1.909155(-0.06%), 79.72M WeightUpdates/sec
Iter:87/100, MeanErr=1.909384(0.01%), 102.37M WeightUpdates/sec
Iter:88/100, MeanErr=1.907751(-0.09%), 105.48M WeightUpdates/sec
Iter:89/100, MeanErr=1.910164(0.13%), 102.53M WeightUpdates/sec
Iter:90/100, MeanErr=1.907935(-0.12%), 105.03M WeightUpdates/sec
Iter:91/100, MeanErr=1.909510(0.08%), 99.97M WeightUpdates/sec
Iter:92/100, MeanErr=1.907405(-0.11%), 100.03M WeightUpdates/sec
Iter:93/100, MeanErr=1.905757(-0.09%), 113.21M WeightUpdates/sec
Iter:94/100, MeanErr=1.909167(0.18%), 107.86M WeightUpdates/sec
Iter:95/100, MeanErr=1.907593(-0.08%), 106.09M WeightUpdates/sec
Iter:96/100, MeanErr=1.908358(0.04%), 111.25M WeightUpdates/sec
Iter:97/100, MeanErr=1.906484(-0.10%), 95.81M WeightUpdates/sec
Iter:98/100, MeanErr=1.908239(0.09%), 105.89M WeightUpdates/sec
Iter:99/100, MeanErr=1.908508(0.01%), 103.05M WeightUpdates/sec
Iter:100/100, MeanErr=1.904747(-0.20%), 106.81M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 1.896338
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.1620840
Elapsed time: 00:00:00.0096627
Beginning processing data.
Rows Read: 38, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0312987
Finished writing 38 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: Less than .001 seconds
Species Score.0 Score.1 Score.2
0 versicolor 0.350161 0.339557 0.310282
1 setosa 0.358506 0.336593 0.304901
2 virginica 0.346957 0.340573 0.312470
3 virginica 0.346685 0.340748 0.312567
4 virginica 0.348469 0.340113 0.311417
Exemplo de regressão
'''
Regression.
'''
import numpy
import pandas
from microsoftml import rx_neural_network, rx_predict
from revoscalepy.etl.RxDataStep import rx_data_step
from microsoftml.datasets.datasets import get_dataset
attitude = get_dataset("attitude")
import sklearn
if sklearn.__version__ < "0.18":
from sklearn.cross_validation import train_test_split
else:
from sklearn.model_selection import train_test_split
attitudedf = attitude.as_df()
data_train, data_test = train_test_split(attitudedf)
model = rx_neural_network(
formula="rating ~ complaints + privileges + learning + raises + critical + advance",
method="regression",
data=data_train)
# RuntimeError: The type (RxTextData) for file is not supported.
score_ds = rx_predict(model, data=data_test,
extra_vars_to_write=["rating"])
# Print the first five rows
print(rx_data_step(score_ds, number_rows_read=5))
Output:
Automatically adding a MinMax normalization transform, use 'norm=Warn' or 'norm=No' to turn this behavior off.
Beginning processing data.
Rows Read: 22, Read Time: 0, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 22, Read Time: 0.001, Transform Time: 0
Beginning processing data.
Beginning processing data.
Rows Read: 22, Read Time: 0, Transform Time: 0
Beginning processing data.
Using: AVX Math
***** Net definition *****
input Data [6];
hidden H [100] sigmoid { // Depth 1
from Data all;
}
output Result [1] linear { // Depth 0
from H all;
}
***** End net definition *****
Input count: 6
Output count: 1
Output Function: Linear
Loss Function: SquaredLoss
PreTrainer: NoPreTrainer
___________________________________________________________________
Starting training...
Learning rate: 0.001000
Momentum: 0.000000
InitWtsDiameter: 0.100000
___________________________________________________________________
Initializing 1 Hidden Layers, 801 Weights...
Estimated Pre-training MeanError = 4458.793673
Iter:1/100, MeanErr=1624.747024(-63.56%), 27.30M WeightUpdates/sec
Iter:2/100, MeanErr=139.267390(-91.43%), 30.50M WeightUpdates/sec
Iter:3/100, MeanErr=116.382316(-16.43%), 29.16M WeightUpdates/sec
Iter:4/100, MeanErr=114.947244(-1.23%), 32.06M WeightUpdates/sec
Iter:5/100, MeanErr=112.886818(-1.79%), 32.96M WeightUpdates/sec
Iter:6/100, MeanErr=112.406547(-0.43%), 30.29M WeightUpdates/sec
Iter:7/100, MeanErr=110.502757(-1.69%), 30.92M WeightUpdates/sec
Iter:8/100, MeanErr=111.499645(0.90%), 31.20M WeightUpdates/sec
Iter:9/100, MeanErr=111.895816(0.36%), 32.46M WeightUpdates/sec
Iter:10/100, MeanErr=110.171443(-1.54%), 34.61M WeightUpdates/sec
Iter:11/100, MeanErr=106.975524(-2.90%), 22.14M WeightUpdates/sec
Iter:12/100, MeanErr=107.708220(0.68%), 7.73M WeightUpdates/sec
Iter:13/100, MeanErr=105.345097(-2.19%), 28.99M WeightUpdates/sec
Iter:14/100, MeanErr=109.937833(4.36%), 31.04M WeightUpdates/sec
Iter:15/100, MeanErr=106.672340(-2.97%), 30.04M WeightUpdates/sec
Iter:16/100, MeanErr=108.474555(1.69%), 32.41M WeightUpdates/sec
Iter:17/100, MeanErr=109.449054(0.90%), 31.60M WeightUpdates/sec
Iter:18/100, MeanErr=105.911830(-3.23%), 34.05M WeightUpdates/sec
Iter:19/100, MeanErr=106.045172(0.13%), 33.80M WeightUpdates/sec
Iter:20/100, MeanErr=108.360427(2.18%), 33.60M WeightUpdates/sec
Iter:21/100, MeanErr=106.506436(-1.71%), 33.77M WeightUpdates/sec
Iter:22/100, MeanErr=99.167335(-6.89%), 32.26M WeightUpdates/sec
Iter:23/100, MeanErr=108.115797(9.02%), 25.86M WeightUpdates/sec
Iter:24/100, MeanErr=106.292283(-1.69%), 31.03M WeightUpdates/sec
Iter:25/100, MeanErr=99.397875(-6.49%), 31.33M WeightUpdates/sec
Iter:26/100, MeanErr=104.805299(5.44%), 31.57M WeightUpdates/sec
Iter:27/100, MeanErr=101.385085(-3.26%), 22.92M WeightUpdates/sec
Iter:28/100, MeanErr=100.064656(-1.30%), 35.01M WeightUpdates/sec
Iter:29/100, MeanErr=100.519013(0.45%), 32.74M WeightUpdates/sec
Iter:30/100, MeanErr=99.273143(-1.24%), 35.12M WeightUpdates/sec
Iter:31/100, MeanErr=100.465649(1.20%), 33.68M WeightUpdates/sec
Iter:32/100, MeanErr=102.402320(1.93%), 33.79M WeightUpdates/sec
Iter:33/100, MeanErr=97.517196(-4.77%), 32.32M WeightUpdates/sec
Iter:34/100, MeanErr=102.597511(5.21%), 32.46M WeightUpdates/sec
Iter:35/100, MeanErr=96.187788(-6.25%), 32.32M WeightUpdates/sec
Iter:36/100, MeanErr=101.533507(5.56%), 21.44M WeightUpdates/sec
Iter:37/100, MeanErr=99.339624(-2.16%), 21.53M WeightUpdates/sec
Iter:38/100, MeanErr=98.049306(-1.30%), 15.27M WeightUpdates/sec
Iter:39/100, MeanErr=97.508282(-0.55%), 23.21M WeightUpdates/sec
Iter:40/100, MeanErr=99.894288(2.45%), 27.94M WeightUpdates/sec
Iter:41/100, MeanErr=95.190566(-4.71%), 32.47M WeightUpdates/sec
Iter:42/100, MeanErr=91.234977(-4.16%), 31.29M WeightUpdates/sec
Iter:43/100, MeanErr=98.824414(8.32%), 32.35M WeightUpdates/sec
Iter:44/100, MeanErr=96.759533(-2.09%), 22.37M WeightUpdates/sec
Iter:45/100, MeanErr=95.275106(-1.53%), 32.09M WeightUpdates/sec
Iter:46/100, MeanErr=95.749031(0.50%), 26.49M WeightUpdates/sec
Iter:47/100, MeanErr=96.267879(0.54%), 31.81M WeightUpdates/sec
Iter:48/100, MeanErr=97.383752(1.16%), 31.01M WeightUpdates/sec
Iter:49/100, MeanErr=96.605199(-0.80%), 32.05M WeightUpdates/sec
Iter:50/100, MeanErr=96.927400(0.33%), 32.42M WeightUpdates/sec
Iter:51/100, MeanErr=96.288491(-0.66%), 28.89M WeightUpdates/sec
Iter:52/100, MeanErr=92.751171(-3.67%), 33.68M WeightUpdates/sec
Iter:53/100, MeanErr=88.655001(-4.42%), 34.53M WeightUpdates/sec
Iter:54/100, MeanErr=90.923513(2.56%), 32.00M WeightUpdates/sec
Iter:55/100, MeanErr=91.627261(0.77%), 25.74M WeightUpdates/sec
Iter:56/100, MeanErr=91.132907(-0.54%), 30.00M WeightUpdates/sec
Iter:57/100, MeanErr=95.294092(4.57%), 33.13M WeightUpdates/sec
Iter:58/100, MeanErr=90.219024(-5.33%), 31.70M WeightUpdates/sec
Iter:59/100, MeanErr=92.727605(2.78%), 30.71M WeightUpdates/sec
Iter:60/100, MeanErr=86.910488(-6.27%), 33.07M WeightUpdates/sec
Iter:61/100, MeanErr=92.350984(6.26%), 32.46M WeightUpdates/sec
Iter:62/100, MeanErr=93.208298(0.93%), 31.08M WeightUpdates/sec
Iter:63/100, MeanErr=90.784723(-2.60%), 21.19M WeightUpdates/sec
Iter:64/100, MeanErr=88.685225(-2.31%), 33.17M WeightUpdates/sec
Iter:65/100, MeanErr=91.668555(3.36%), 30.65M WeightUpdates/sec
Iter:66/100, MeanErr=82.607568(-9.88%), 29.72M WeightUpdates/sec
Iter:67/100, MeanErr=88.787842(7.48%), 32.98M WeightUpdates/sec
Iter:68/100, MeanErr=88.793186(0.01%), 34.67M WeightUpdates/sec
Iter:69/100, MeanErr=88.918795(0.14%), 14.09M WeightUpdates/sec
Iter:70/100, MeanErr=87.121434(-2.02%), 33.02M WeightUpdates/sec
Iter:71/100, MeanErr=86.865602(-0.29%), 34.87M WeightUpdates/sec
Iter:72/100, MeanErr=87.261979(0.46%), 32.34M WeightUpdates/sec
Iter:73/100, MeanErr=87.812460(0.63%), 31.35M WeightUpdates/sec
Iter:74/100, MeanErr=87.818462(0.01%), 32.54M WeightUpdates/sec
Iter:75/100, MeanErr=87.085672(-0.83%), 34.80M WeightUpdates/sec
Iter:76/100, MeanErr=85.773668(-1.51%), 35.39M WeightUpdates/sec
Iter:77/100, MeanErr=85.338703(-0.51%), 34.59M WeightUpdates/sec
Iter:78/100, MeanErr=79.370105(-6.99%), 30.14M WeightUpdates/sec
Iter:79/100, MeanErr=83.026209(4.61%), 32.32M WeightUpdates/sec
Iter:80/100, MeanErr=89.776417(8.13%), 33.14M WeightUpdates/sec
Iter:81/100, MeanErr=85.447100(-4.82%), 32.32M WeightUpdates/sec
Iter:82/100, MeanErr=83.991969(-1.70%), 22.12M WeightUpdates/sec
Iter:83/100, MeanErr=85.065064(1.28%), 30.41M WeightUpdates/sec
Iter:84/100, MeanErr=83.762008(-1.53%), 31.29M WeightUpdates/sec
Iter:85/100, MeanErr=84.217726(0.54%), 34.92M WeightUpdates/sec
Iter:86/100, MeanErr=82.395181(-2.16%), 34.26M WeightUpdates/sec
Iter:87/100, MeanErr=82.979145(0.71%), 22.87M WeightUpdates/sec
Iter:88/100, MeanErr=83.656685(0.82%), 28.51M WeightUpdates/sec
Iter:89/100, MeanErr=81.132468(-3.02%), 32.43M WeightUpdates/sec
Iter:90/100, MeanErr=81.311106(0.22%), 30.91M WeightUpdates/sec
Iter:91/100, MeanErr=81.953897(0.79%), 31.98M WeightUpdates/sec
Iter:92/100, MeanErr=79.018074(-3.58%), 33.13M WeightUpdates/sec
Iter:93/100, MeanErr=78.220412(-1.01%), 31.47M WeightUpdates/sec
Iter:94/100, MeanErr=80.833884(3.34%), 25.16M WeightUpdates/sec
Iter:95/100, MeanErr=81.550135(0.89%), 32.64M WeightUpdates/sec
Iter:96/100, MeanErr=77.785628(-4.62%), 32.54M WeightUpdates/sec
Iter:97/100, MeanErr=76.438158(-1.73%), 34.34M WeightUpdates/sec
Iter:98/100, MeanErr=79.471621(3.97%), 33.12M WeightUpdates/sec
Iter:99/100, MeanErr=76.038475(-4.32%), 33.01M WeightUpdates/sec
Iter:100/100, MeanErr=75.349164(-0.91%), 32.68M WeightUpdates/sec
Done!
Estimated Post-training MeanError = 75.768932
___________________________________________________________________
Not training a calibrator because it is not needed.
Elapsed time: 00:00:00.1178557
Elapsed time: 00:00:00.0088299
Beginning processing data.
Rows Read: 8, Read Time: 0, Transform Time: 0
Beginning processing data.
Elapsed time: 00:00:00.0293893
Finished writing 8 rows.
Writing completed.
Rows Read: 5, Total Rows Processed: 5, Total Chunk Time: 0.001 seconds
rating Score
0 82.0 70.120613
1 64.0 66.344688
2 68.0 68.862373
3 58.0 68.241341
4 63.0 67.196869