Ler em inglês

Partilhar via


Guia de início rápido: Análise de Imagem 4.0

Escolha uma linguagem de programação.

Comece a usar a API REST do Image Analysis 4.0 ou o SDK do cliente para configurar um aplicativo básico de análise de imagem. O serviço de Análise de Imagem fornece algoritmos de IA para processar imagens e retornar informações sobre seus recursos visuais. Siga estas etapas para instalar um pacote em seu aplicativo e experimente o código de exemplo.

Use o SDK do cliente de Análise de Imagem para .NET para ler texto em uma imagem e gerar uma legenda de imagem. Este guia de início rápido analisa uma imagem remota e imprime os resultados no console.

Pacote de documentação | de referência (NuGet) | Amostras

Gorjeta

A API do Analysis 4.0 pode fazer muitas operações diferentes. Consulte o guia de instruções Analisar imagem para obter exemplos que mostram todos os recursos disponíveis.

Pré-requisitos

  • O IDE do Visual Studio com o desenvolvimento da área de trabalho .NET habilitado. Ou, se você não planeja usar o IDE do Visual Studio, precisará do SDK do .NET instalado.
  • Depois de ter sua assinatura do Azure, crie um recurso de Visão Computacional no portal do Azure. Para usar o recurso de legenda neste início rápido, você deve criar seu recurso em uma das regiões do Azure com suporte (consulte Legendas de imagem). Depois de implantar, selecione Ir para recurso.
    • Você precisa da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço Azure AI Vision.
    • Você pode usar o nível de preço gratuito (F0) para experimentar o serviço e atualizar posteriormente para um nível pago para produção.

Configurar a aplicação

Crie um novo aplicativo C#.

Abra o Visual Studio e, em Introdução, selecione Criar um novo projeto. Defina os filtros de modelo como C#/Todas as plataformas/Console. Selecione Console App (aplicativo de linha de comando que pode ser executado no .NET no Windows, Linux e macOS) e escolha Next. Atualize o nome do projeto para ImageAnalysisQuickstart e escolha Next. Selecione .NET 6.0 ou superior e escolha Criar para criar o projeto.

Instalar o SDK do cliente

Depois de criar um novo projeto, instale o SDK do cliente clicando com o botão direito do mouse na solução do projeto no Gerenciador de Soluções e selecionando Gerenciar Pacotes NuGet. No gestor de pacotes que abre, selecione Procurar, marque a caixa Incluir pré-lançamento e procure Azure.AI.Vision.ImageAnalysis. Selecione Instalar.

Criar variáveis de ambiente

Neste exemplo, escreva suas credenciais em variáveis de ambiente na máquina local que executa o aplicativo.

Aceda ao portal do Azure. Se o recurso criado na seção Pré-requisitos for implantado com êxito, selecione Ir para o recurso em Próximas etapas. Você pode encontrar sua chave e ponto de extremidade em Gerenciamento de Recursos na página Chaves e Ponto de Extremidade . Sua chave de recurso não é a mesma que sua ID de assinatura do Azure.

Para definir a variável de ambiente para sua chave e ponto de extremidade, abra uma janela do console e siga as instruções para seu sistema operacional e ambiente de desenvolvimento.

  • Para definir a VISION_KEY variável de ambiente, substitua <your_key> por uma das chaves do seu recurso.
  • Para definir a variável de VISION_ENDPOINT ambiente, substitua <your_endpoint> pelo ponto de extremidade do seu recurso.

Importante

Recomendamos a autenticação do Microsoft Entra ID com identidades gerenciadas para recursos do Azure para evitar o armazenamento de credenciais com seus aplicativos executados na nuvem.

Use chaves de API com cuidado. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente. Se estiver usando chaves de API, armazene-as com segurança no Cofre de Chaves do Azure, gire as chaves regularmente e restrinja o acesso ao Cofre de Chaves do Azure usando controle de acesso baseado em função e restrições de acesso à rede. Para obter mais informações sobre como usar chaves de API com segurança em seus aplicativos, consulte Chaves de API com o Cofre de Chaves do Azure.

Para obter mais informações sobre segurança de serviços de IA, consulte Autenticar solicitações para serviços de IA do Azure.

Bash
export VISION_KEY=<your_key>
Bash
export VISION_ENDPOINT=<your_endpoint>

Depois de adicionar as variáveis de ambiente, execute source ~/.bashrc a partir da janela do console para tornar as alterações efetivas.

Analisar imagem

No diretório do projeto, abra o arquivo Program.cs que foi criado anteriormente com seu novo projeto. Cole no seguinte código:

Gorjeta

O código mostra a análise de um URL de imagem. Você também pode analisar um arquivo de imagem local ou uma imagem de um buffer de memória. Para obter mais informações, consulte o guia de instruções Analisar imagem.

C#
using Azure;
using Azure.AI.Vision.ImageAnalysis;
using System;

public class Program
{
    static void AnalyzeImage()
    {
        string endpoint = Environment.GetEnvironmentVariable("VISION_ENDPOINT");
        string key = Environment.GetEnvironmentVariable("VISION_KEY");

        ImageAnalysisClient client = new ImageAnalysisClient(
            new Uri(endpoint),
            new AzureKeyCredential(key));

        ImageAnalysisResult result = client.Analyze(
            new Uri("https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png"),
            VisualFeatures.Caption | VisualFeatures.Read,
            new ImageAnalysisOptions { GenderNeutralCaption = true });

        Console.WriteLine("Image analysis results:");
        Console.WriteLine(" Caption:");
        Console.WriteLine($"   '{result.Caption.Text}', Confidence {result.Caption.Confidence:F4}");

        Console.WriteLine(" Read:");
        foreach (DetectedTextBlock block in result.Read.Blocks)
            foreach (DetectedTextLine line in block.Lines)
            {
                Console.WriteLine($"   Line: '{line.Text}', Bounding Polygon: [{string.Join(" ", line.BoundingPolygon)}]");
                foreach (DetectedTextWord word in line.Words)
                {
                    Console.WriteLine($"     Word: '{word.Text}', Confidence {word.Confidence.ToString("#.####")}, Bounding Polygon: [{string.Join(" ", word.BoundingPolygon)}]");
                }
            }
    }

    static void Main()
    {
        try
        {
            AnalyzeImage();
        }
        catch (Exception e)
        {
            Console.WriteLine(e);
        }
    }
}

Crie e execute o aplicativo selecionando Iniciar depuração no menu Depurar na parte superior da janela do IDE (ou pressione F5).

Saída

A saída do console deve mostrar algo semelhante ao seguinte texto:

Console
Caption:
   "a person pointing at a screen", Confidence 0.4892
Text:
   Line: '9:35 AM', Bounding polygon {{X=130,Y=129},{X=215,Y=130},{X=215,Y=149},{X=130,Y=148}}
     Word: '9:35', Bounding polygon {{X=131,Y=130},{X=171,Y=130},{X=171,Y=149},{X=130,Y=149}}, Confidence 0.9930
     Word: 'AM', Bounding polygon {{X=179,Y=130},{X=204,Y=130},{X=203,Y=149},{X=178,Y=149}}, Confidence 0.9980
   Line: 'E Conference room 154584354', Bounding polygon {{X=130,Y=153},{X=224,Y=154},{X=224,Y=161},{X=130,Y=161}}
     Word: 'E', Bounding polygon {{X=131,Y=154},{X=135,Y=154},{X=135,Y=161},{X=131,Y=161}}, Confidence 0.1040
     Word: 'Conference', Bounding polygon {{X=142,Y=154},{X=174,Y=154},{X=173,Y=161},{X=141,Y=161}}, Confidence 0.9020
     Word: 'room', Bounding polygon {{X=175,Y=154},{X=189,Y=155},{X=188,Y=161},{X=175,Y=161}}, Confidence 0.7960
     Word: '154584354', Bounding polygon {{X=192,Y=155},{X=224,Y=154},{X=223,Y=162},{X=191,Y=161}}, Confidence 0.8640
   Line: '#: 555-173-4547', Bounding polygon {{X=130,Y=163},{X=182,Y=164},{X=181,Y=171},{X=130,Y=170}}
     Word: '#:', Bounding polygon {{X=131,Y=163},{X=139,Y=164},{X=139,Y=171},{X=131,Y=171}}, Confidence 0.0360
     Word: '555-173-4547', Bounding polygon {{X=142,Y=164},{X=182,Y=165},{X=181,Y=171},{X=142,Y=171}}, Confidence 0.5970
   Line: 'Town Hall', Bounding polygon {{X=546,Y=180},{X=590,Y=180},{X=590,Y=190},{X=546,Y=190}}
     Word: 'Town', Bounding polygon {{X=547,Y=181},{X=568,Y=181},{X=568,Y=190},{X=546,Y=191}}, Confidence 0.9810
     Word: 'Hall', Bounding polygon {{X=570,Y=181},{X=590,Y=181},{X=590,Y=191},{X=570,Y=190}}, Confidence 0.9910
   Line: '9:00 AM - 10:00 AM', Bounding polygon {{X=546,Y=191},{X=596,Y=192},{X=596,Y=200},{X=546,Y=199}}
     Word: '9:00', Bounding polygon {{X=546,Y=192},{X=555,Y=192},{X=555,Y=200},{X=546,Y=200}}, Confidence 0.0900
     Word: 'AM', Bounding polygon {{X=557,Y=192},{X=565,Y=192},{X=565,Y=200},{X=557,Y=200}}, Confidence 0.9910
     Word: '-', Bounding polygon {{X=567,Y=192},{X=569,Y=192},{X=569,Y=200},{X=567,Y=200}}, Confidence 0.6910
     Word: '10:00', Bounding polygon {{X=570,Y=192},{X=585,Y=193},{X=584,Y=200},{X=570,Y=200}}, Confidence 0.8850
     Word: 'AM', Bounding polygon {{X=586,Y=193},{X=593,Y=194},{X=593,Y=200},{X=586,Y=200}}, Confidence 0.9910
   Line: 'Aaron Buaion', Bounding polygon {{X=543,Y=201},{X=581,Y=201},{X=581,Y=208},{X=543,Y=208}}
     Word: 'Aaron', Bounding polygon {{X=545,Y=202},{X=560,Y=202},{X=559,Y=208},{X=544,Y=208}}, Confidence 0.6020
     Word: 'Buaion', Bounding polygon {{X=561,Y=202},{X=580,Y=202},{X=579,Y=208},{X=560,Y=208}}, Confidence 0.2910        
   Line: 'Daily SCRUM', Bounding polygon {{X=537,Y=259},{X=575,Y=260},{X=575,Y=266},{X=537,Y=265}}
     Word: 'Daily', Bounding polygon {{X=538,Y=259},{X=551,Y=260},{X=550,Y=266},{X=538,Y=265}}, Confidence 0.1750
     Word: 'SCRUM', Bounding polygon {{X=552,Y=260},{X=570,Y=260},{X=570,Y=266},{X=551,Y=266}}, Confidence 0.1140
   Line: '10:00 AM 11:00 AM', Bounding polygon {{X=536,Y=266},{X=590,Y=266},{X=590,Y=272},{X=536,Y=272}}
     Word: '10:00', Bounding polygon {{X=539,Y=267},{X=553,Y=267},{X=552,Y=273},{X=538,Y=272}}, Confidence 0.8570
     Word: 'AM', Bounding polygon {{X=554,Y=267},{X=561,Y=267},{X=560,Y=273},{X=553,Y=273}}, Confidence 0.9980
     Word: '11:00', Bounding polygon {{X=564,Y=267},{X=578,Y=267},{X=577,Y=273},{X=563,Y=273}}, Confidence 0.4790
     Word: 'AM', Bounding polygon {{X=579,Y=267},{X=586,Y=267},{X=585,Y=273},{X=578,Y=273}}, Confidence 0.9940
   Line: 'Churlette de Crum', Bounding polygon {{X=538,Y=273},{X=584,Y=273},{X=585,Y=279},{X=538,Y=279}}
     Word: 'Churlette', Bounding polygon {{X=539,Y=274},{X=562,Y=274},{X=561,Y=279},{X=538,Y=279}}, Confidence 0.4640     
     Word: 'de', Bounding polygon {{X=563,Y=274},{X=569,Y=274},{X=568,Y=279},{X=562,Y=279}}, Confidence 0.8100
     Word: 'Crum', Bounding polygon {{X=570,Y=274},{X=582,Y=273},{X=581,Y=279},{X=569,Y=279}}, Confidence 0.8850
   Line: 'Quarterly NI Hands', Bounding polygon {{X=538,Y=295},{X=588,Y=295},{X=588,Y=301},{X=538,Y=302}}
     Word: 'Quarterly', Bounding polygon {{X=540,Y=296},{X=562,Y=296},{X=562,Y=302},{X=539,Y=302}}, Confidence 0.5230     
     Word: 'NI', Bounding polygon {{X=563,Y=296},{X=570,Y=296},{X=570,Y=302},{X=563,Y=302}}, Confidence 0.3030
     Word: 'Hands', Bounding polygon {{X=572,Y=296},{X=588,Y=296},{X=588,Y=302},{X=571,Y=302}}, Confidence 0.6130
   Line: '11.00 AM-12:00 PM', Bounding polygon {{X=536,Y=304},{X=588,Y=303},{X=588,Y=309},{X=536,Y=310}}
     Word: '11.00', Bounding polygon {{X=538,Y=304},{X=552,Y=304},{X=552,Y=310},{X=538,Y=310}}, Confidence 0.6180
     Word: 'AM-12:00', Bounding polygon {{X=554,Y=304},{X=578,Y=304},{X=577,Y=310},{X=553,Y=310}}, Confidence 0.2700      
     Word: 'PM', Bounding polygon {{X=579,Y=304},{X=586,Y=304},{X=586,Y=309},{X=578,Y=310}}, Confidence 0.6620
   Line: 'Bebek Shaman', Bounding polygon {{X=538,Y=310},{X=577,Y=310},{X=577,Y=316},{X=538,Y=316}}
     Word: 'Bebek', Bounding polygon {{X=539,Y=310},{X=554,Y=310},{X=554,Y=317},{X=539,Y=316}}, Confidence 0.6110
     Word: 'Shaman', Bounding polygon {{X=555,Y=310},{X=576,Y=311},{X=576,Y=317},{X=555,Y=317}}, Confidence 0.6050        
   Line: 'Weekly stand up', Bounding polygon {{X=537,Y=332},{X=582,Y=333},{X=582,Y=339},{X=537,Y=338}}
     Word: 'Weekly', Bounding polygon {{X=538,Y=332},{X=557,Y=333},{X=556,Y=339},{X=538,Y=338}}, Confidence 0.6060        
     Word: 'stand', Bounding polygon {{X=558,Y=333},{X=572,Y=334},{X=571,Y=340},{X=557,Y=339}}, Confidence 0.4890
     Word: 'up', Bounding polygon {{X=574,Y=334},{X=580,Y=334},{X=580,Y=340},{X=573,Y=340}}, Confidence 0.8150
   Line: '12:00 PM-1:00 PM', Bounding polygon {{X=537,Y=340},{X=583,Y=340},{X=583,Y=347},{X=536,Y=346}}
     Word: '12:00', Bounding polygon {{X=539,Y=341},{X=553,Y=341},{X=552,Y=347},{X=538,Y=347}}, Confidence 0.8260
     Word: 'PM-1:00', Bounding polygon {{X=554,Y=341},{X=575,Y=341},{X=574,Y=347},{X=553,Y=347}}, Confidence 0.2090       
     Word: 'PM', Bounding polygon {{X=576,Y=341},{X=583,Y=341},{X=582,Y=347},{X=575,Y=347}}, Confidence 0.0390
   Line: 'Delle Marckre', Bounding polygon {{X=538,Y=347},{X=582,Y=347},{X=582,Y=352},{X=538,Y=353}}
     Word: 'Delle', Bounding polygon {{X=540,Y=348},{X=559,Y=347},{X=558,Y=353},{X=539,Y=353}}, Confidence 0.5800
     Word: 'Marckre', Bounding polygon {{X=560,Y=347},{X=582,Y=348},{X=582,Y=353},{X=559,Y=353}}, Confidence 0.2750       
   Line: 'Product review', Bounding polygon {{X=538,Y=370},{X=577,Y=370},{X=577,Y=376},{X=538,Y=375}}
     Word: 'Product', Bounding polygon {{X=539,Y=370},{X=559,Y=371},{X=558,Y=376},{X=539,Y=376}}, Confidence 0.6150       
     Word: 'review', Bounding polygon {{X=560,Y=371},{X=576,Y=371},{X=575,Y=376},{X=559,Y=376}}, Confidence 0.0400 

Clean up resources (Limpar recursos)

Se quiser limpar e remover uma assinatura de serviços do Azure AI, você pode excluir o recurso ou grupo de recursos. A exclusão do grupo de recursos também exclui quaisquer outros recursos associados a ele.

Próximos passos

Neste início rápido, você aprendeu como instalar o SDK do cliente de Análise de Imagem e fazer chamadas básicas de análise de imagem. Em seguida, saiba mais sobre os recursos da API do Analysis 4.0.

Use o SDK do cliente de Análise de Imagem para Python para ler texto em uma imagem e gerar uma legenda de imagem. Este guia de início rápido analisa uma imagem remota e imprime os resultados no console.

Pacote de documentação | de referência (PyPi) | Amostras

Gorjeta

A API do Analysis 4.0 pode fazer muitas operações diferentes. Consulte o guia de instruções Analisar imagem para obter exemplos que mostram todos os recursos disponíveis.

Pré-requisitos

  • Uma assinatura do Azure - Crie uma gratuitamente
  • Python 3.x. Sua instalação do Python deve incluir pip. Você pode verificar se você tem pip instalado executando pip --version na linha de comando. Obtenha pip instalando a versão mais recente do Python.
  • Depois de ter sua assinatura do Azure, crie um recurso de Visão Computacional no portal do Azure. Para usar o recurso de legenda neste início rápido, você deve criar seu recurso em uma das regiões do Azure com suporte (consulte Legendas de imagem para obter a lista de regiões). Depois de implantar, selecione Ir para recurso.
    • Você precisa da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço Azure AI Vision.
    • Você pode usar o nível de preço gratuito (F0) para experimentar o serviço e atualizar posteriormente para um nível pago para produção.

Criar variáveis de ambiente

Neste exemplo, escreva suas credenciais em variáveis de ambiente na máquina local que executa o aplicativo.

Aceda ao portal do Azure. Se o recurso criado na seção Pré-requisitos for implantado com êxito, selecione Ir para o recurso em Próximas etapas. Você pode encontrar sua chave e ponto de extremidade em Gerenciamento de Recursos na página Chaves e Ponto de Extremidade . Sua chave de recurso não é a mesma que sua ID de assinatura do Azure.

Para definir a variável de ambiente para sua chave e ponto de extremidade, abra uma janela do console e siga as instruções para seu sistema operacional e ambiente de desenvolvimento.

  • Para definir a VISION_KEY variável de ambiente, substitua <your_key> por uma das chaves do seu recurso.
  • Para definir a variável de VISION_ENDPOINT ambiente, substitua <your_endpoint> pelo ponto de extremidade do seu recurso.

Importante

Recomendamos a autenticação do Microsoft Entra ID com identidades gerenciadas para recursos do Azure para evitar o armazenamento de credenciais com seus aplicativos executados na nuvem.

Use chaves de API com cuidado. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente. Se estiver usando chaves de API, armazene-as com segurança no Cofre de Chaves do Azure, gire as chaves regularmente e restrinja o acesso ao Cofre de Chaves do Azure usando controle de acesso baseado em função e restrições de acesso à rede. Para obter mais informações sobre como usar chaves de API com segurança em seus aplicativos, consulte Chaves de API com o Cofre de Chaves do Azure.

Para obter mais informações sobre segurança de serviços de IA, consulte Autenticar solicitações para serviços de IA do Azure.

Bash
export VISION_KEY=<your_key>
Bash
export VISION_ENDPOINT=<your_endpoint>

Depois de adicionar as variáveis de ambiente, execute source ~/.bashrc a partir da janela do console para tornar as alterações efetivas.

Analisar imagem

  1. Abra um prompt de comando onde você deseja o novo projeto e crie um novo arquivo chamado quickstart.py.

  2. Execute este comando para instalar o SDK de Análise de Imagem:

    Console
    pip install azure-ai-vision-imageanalysis
    
  3. Copie o seguinte código para quickstart.py:

    Gorjeta

    O código mostra a análise de um URL de imagem. Você também pode analisar uma imagem do buffer de memória do programa. Para obter mais informações, consulte o guia de instruções Analisar imagem.

    Python
    import os
    from azure.ai.vision.imageanalysis import ImageAnalysisClient
    from azure.ai.vision.imageanalysis.models import VisualFeatures
    from azure.core.credentials import AzureKeyCredential
    
    # Set the values of your computer vision endpoint and computer vision key
    # as environment variables:
    try:
        endpoint = os.environ["VISION_ENDPOINT"]
        key = os.environ["VISION_KEY"]
    except KeyError:
        print("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'")
        print("Set them before running this sample.")
        exit()
    
    # Create an Image Analysis client
    client = ImageAnalysisClient(
        endpoint=endpoint,
        credential=AzureKeyCredential(key)
    )
    
    # Get a caption for the image. This will be a synchronously (blocking) call.
    result = client.analyze_from_url(
        image_url="https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png",
        visual_features=[VisualFeatures.CAPTION, VisualFeatures.READ],
        gender_neutral_caption=True,  # Optional (default is False)
    )
    
    print("Image analysis results:")
    # Print caption results to the console
    print(" Caption:")
    if result.caption is not None:
        print(f"   '{result.caption.text}', Confidence {result.caption.confidence:.4f}")
    
    # Print text (OCR) analysis results to the console
    print(" Read:")
    if result.read is not None:
        for line in result.read.blocks[0].lines:
            print(f"   Line: '{line.text}', Bounding box {line.bounding_polygon}")
            for word in line.words:
                print(f"     Word: '{word.text}', Bounding polygon {word.bounding_polygon}, Confidence {word.confidence:.4f}")
    
  4. Em seguida, execute o aplicativo com o python comando em seu arquivo de início rápido.

    Console
    python quickstart.py
    

Saída

A saída do console deve mostrar algo semelhante ao seguinte texto:

Console
Caption:
   'a person pointing at a screen', Confidence 0.4892
Text:
   Line: '9:35 AM', Bounding polygon {130, 129, 215, 130, 215, 149, 130, 148}
     Word: '9:35', Bounding polygon {131, 130, 171, 130, 171, 149, 130, 149}, Confidence 0.9930
     Word: 'AM', Bounding polygon {179, 130, 204, 130, 203, 149, 178, 149}, Confidence 0.9980
   Line: 'E Conference room 154584354', Bounding polygon {130, 153, 224, 154, 224, 161, 130, 161}
     Word: 'E', Bounding polygon {131, 154, 135, 154, 135, 161, 131, 161}, Confidence 0.1040
     Word: 'Conference', Bounding polygon {142, 154, 174, 154, 173, 161, 141, 161}, Confidence 0.9020
     Word: 'room', Bounding polygon {175, 154, 189, 155, 188, 161, 175, 161}, Confidence 0.7960
     Word: '154584354', Bounding polygon {192, 155, 224, 154, 223, 162, 191, 161}, Confidence 0.8640
   Line: '#: 555-173-4547', Bounding polygon {130, 163, 182, 164, 181, 171, 130, 170}
     Word: '#:', Bounding polygon {131, 163, 139, 164, 139, 171, 131, 171}, Confidence 0.0360
     Word: '555-173-4547', Bounding polygon {142, 164, 182, 165, 181, 171, 142, 171}, Confidence 0.5970
   Line: 'Town Hall', Bounding polygon {546, 180, 590, 180, 590, 190, 546, 190}
     Word: 'Town', Bounding polygon {547, 181, 568, 181, 568, 190, 546, 191}, Confidence 0.9810
     Word: 'Hall', Bounding polygon {570, 181, 590, 181, 590, 191, 570, 190}, Confidence 0.9910
   Line: '9:00 AM - 10:00 AM', Bounding polygon {546, 191, 596, 192, 596, 200, 546, 199}
     Word: '9:00', Bounding polygon {546, 192, 555, 192, 555, 200, 546, 200}, Confidence 0.0900
     Word: 'AM', Bounding polygon {557, 192, 565, 192, 565, 200, 557, 200}, Confidence 0.9910
     Word: '-', Bounding polygon {567, 192, 569, 192, 569, 200, 567, 200}, Confidence 0.6910
     Word: '10:00', Bounding polygon {570, 192, 585, 193, 584, 200, 570, 200}, Confidence 0.8850
     Word: 'AM', Bounding polygon {586, 193, 593, 194, 593, 200, 586, 200}, Confidence 0.9910
   Line: 'Aaron Buaion', Bounding polygon {543, 201, 581, 201, 581, 208, 543, 208}
     Word: 'Aaron', Bounding polygon {545, 202, 560, 202, 559, 208, 544, 208}, Confidence 0.6020
     Word: 'Buaion', Bounding polygon {561, 202, 580, 202, 579, 208, 560, 208}, Confidence 0.2910
   Line: 'Daily SCRUM', Bounding polygon {537, 259, 575, 260, 575, 266, 537, 265}
     Word: 'Daily', Bounding polygon {538, 259, 551, 260, 550, 266, 538, 265}, Confidence 0.1750
     Word: 'SCRUM', Bounding polygon {552, 260, 570, 260, 570, 266, 551, 266}, Confidence 0.1140
   Line: '10:00 AM 11:00 AM', Bounding polygon {536, 266, 590, 266, 590, 272, 536, 272}
     Word: '10:00', Bounding polygon {539, 267, 553, 267, 552, 273, 538, 272}, Confidence 0.8570
     Word: 'AM', Bounding polygon {554, 267, 561, 267, 560, 273, 553, 273}, Confidence 0.9980
     Word: '11:00', Bounding polygon {564, 267, 578, 267, 577, 273, 563, 273}, Confidence 0.4790
     Word: 'AM', Bounding polygon {579, 267, 586, 267, 585, 273, 578, 273}, Confidence 0.9940
   Line: 'Churlette de Crum', Bounding polygon {538, 273, 584, 273, 585, 279, 538, 279}
     Word: 'Churlette', Bounding polygon {539, 274, 562, 274, 561, 279, 538, 279}, Confidence 0.4640
     Word: 'de', Bounding polygon {563, 274, 569, 274, 568, 279, 562, 279}, Confidence 0.8100
     Word: 'Crum', Bounding polygon {570, 274, 582, 273, 581, 279, 569, 279}, Confidence 0.8850
   Line: 'Quarterly NI Hands', Bounding polygon {538, 295, 588, 295, 588, 301, 538, 302}
     Word: 'Quarterly', Bounding polygon {540, 296, 562, 296, 562, 302, 539, 302}, Confidence 0.5230
     Word: 'NI', Bounding polygon {563, 296, 570, 296, 570, 302, 563, 302}, Confidence 0.3030
     Word: 'Hands', Bounding polygon {572, 296, 588, 296, 588, 302, 571, 302}, Confidence 0.6130
   Line: '11.00 AM-12:00 PM', Bounding polygon {536, 304, 588, 303, 588, 309, 536, 310}
     Word: '11.00', Bounding polygon {538, 304, 552, 304, 552, 310, 538, 310}, Confidence 0.6180
     Word: 'AM-12:00', Bounding polygon {554, 304, 578, 304, 577, 310, 553, 310}, Confidence 0.2700
     Word: 'PM', Bounding polygon {579, 304, 586, 304, 586, 309, 578, 310}, Confidence 0.6620
   Line: 'Bebek Shaman', Bounding polygon {538, 310, 577, 310, 577, 316, 538, 316}
     Word: 'Bebek', Bounding polygon {539, 310, 554, 310, 554, 317, 539, 316}, Confidence 0.6110
     Word: 'Shaman', Bounding polygon {555, 310, 576, 311, 576, 317, 555, 317}, Confidence 0.6050
   Line: 'Weekly stand up', Bounding polygon {537, 332, 582, 333, 582, 339, 537, 338}
     Word: 'Weekly', Bounding polygon {538, 332, 557, 333, 556, 339, 538, 338}, Confidence 0.6060
     Word: 'stand', Bounding polygon {558, 333, 572, 334, 571, 340, 557, 339}, Confidence 0.4890
     Word: 'up', Bounding polygon {574, 334, 580, 334, 580, 340, 573, 340}, Confidence 0.8150
   Line: '12:00 PM-1:00 PM', Bounding polygon {537, 340, 583, 340, 583, 347, 536, 346}
     Word: '12:00', Bounding polygon {539, 341, 553, 341, 552, 347, 538, 347}, Confidence 0.8260
     Word: 'PM-1:00', Bounding polygon {554, 341, 575, 341, 574, 347, 553, 347}, Confidence 0.2090
     Word: 'PM', Bounding polygon {576, 341, 583, 341, 582, 347, 575, 347}, Confidence 0.0390
   Line: 'Delle Marckre', Bounding polygon {538, 347, 582, 347, 582, 352, 538, 353}
     Word: 'Delle', Bounding polygon {540, 348, 559, 347, 558, 353, 539, 353}, Confidence 0.5800
     Word: 'Marckre', Bounding polygon {560, 347, 582, 348, 582, 353, 559, 353}, Confidence 0.2750
   Line: 'Product review', Bounding polygon {538, 370, 577, 370, 577, 376, 538, 375}
     Word: 'Product', Bounding polygon {539, 370, 559, 371, 558, 376, 539, 376}, Confidence 0.6150
     Word: 'review', Bounding polygon {560, 371, 576, 371, 575, 376, 559, 376}, Confidence 0.0400

Clean up resources (Limpar recursos)

Se quiser limpar e remover uma assinatura de serviços do Azure AI, você pode excluir o recurso ou grupo de recursos. A exclusão do grupo de recursos também exclui quaisquer outros recursos associados a ele.

Próximos passos

Neste início rápido, você aprendeu como instalar o SDK do cliente de Análise de Imagem e fazer chamadas básicas de análise de imagem. Em seguida, saiba mais sobre os recursos da API do Analysis 4.0.

Use o SDK do cliente de Análise de Imagem para Java para ler texto em uma imagem e gerar uma legenda de imagem. Este guia de início rápido analisa uma imagem remota e imprime os resultados no console.

Documentação | de referência Maven Package Samples |

Gorjeta

A API do Analysis 4.0 pode fazer muitas operações diferentes. Consulte o guia de instruções Analisar imagem para obter exemplos que mostram todos os recursos disponíveis.

Pré-requisitos

  • Uma máquina Windows 10 (ou superior) x64 ou Linux x64.
  • Java Development Kit (JDK) versão 8 ou superior instalado, como Azul Zulu OpenJDK, Microsoft Build of OpenJDK, Oracle Java ou seu JDK preferido. Execute java -version a partir de uma linha de comando para ver sua versão e confirmar uma instalação bem-sucedida. Certifique-se de que a instalação do Java é nativa da arquitetura do sistema e não está sendo executada através da emulação.
  • Apache Maven instalado. No Linux, instale a partir dos repositórios de distribuição, se disponíveis. Execute mvn -v para confirmar a instalação bem-sucedida.
  • Uma assinatura do Azure - Crie uma gratuitamente
  • Depois de ter sua assinatura do Azure, crie um recurso de Visão Computacional no portal do Azure. Para usar o recurso de legenda neste início rápido, você deve criar seu recurso em uma das regiões do Azure com suporte (consulte Legendas de imagem). Depois de implantar, selecione Ir para recurso.
    • Você precisa da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço Azure AI Vision.
    • Você pode usar o nível de preço gratuito (F0) para experimentar o serviço e atualizar posteriormente para um nível pago para produção.

Configurar a aplicação

Abra uma janela de console e crie uma nova pasta para seu aplicativo de início rápido.

  1. Abra um editor de texto e copie o seguinte conteúdo para um novo arquivo. Salve o arquivo como pom.xml no diretório do projeto

    XML
    <project xmlns="http://maven.apache.org/POM/4.0.0"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
      <modelVersion>4.0.0</modelVersion>
      <groupId>com.example</groupId>
      <artifactId>my-application-name</artifactId>
      <version>1.0.0</version>
      <dependencies>
        <!-- https://mvnrepository.com/artifact/com.azure/azure-ai-vision-imageanalysis -->
        <dependency>
          <groupId>com.azure</groupId>
          <artifactId>azure-ai-vision-imageanalysis</artifactId>
          <version>1.0.0-beta.2</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-nop -->
        <dependency>
          <groupId>org.slf4j</groupId>
          <artifactId>slf4j-nop</artifactId>
          <version>1.7.36</version>
        </dependency>
      </dependencies>
    </project>
    
  2. Atualize o valor da versão (1.0.0-beta.2) com base na versão mais recente disponível do pacote azure-ai-vision-imageanalysis no repositório Maven.

  3. Instale o SDK e as dependências executando o seguinte no diretório do projeto:

    Console
    mvn clean dependency:copy-dependencies
    
  4. Quando a operação for bem-sucedida, verifique se as pastas target\dependency foram criadas e se contêm .jar arquivos.

Criar variáveis de ambiente

Neste exemplo, escreva suas credenciais em variáveis de ambiente na máquina local que executa o aplicativo.

Aceda ao portal do Azure. Se o recurso criado na seção Pré-requisitos for implantado com êxito, selecione Ir para o recurso em Próximas etapas. Você pode encontrar sua chave e ponto de extremidade em Gerenciamento de Recursos na página Chaves e Ponto de Extremidade . Sua chave de recurso não é a mesma que sua ID de assinatura do Azure.

Para definir a variável de ambiente para sua chave e ponto de extremidade, abra uma janela do console e siga as instruções para seu sistema operacional e ambiente de desenvolvimento.

  • Para definir a VISION_KEY variável de ambiente, substitua <your_key> por uma das chaves do seu recurso.
  • Para definir a variável de VISION_ENDPOINT ambiente, substitua <your_endpoint> pelo ponto de extremidade do seu recurso.

Importante

Recomendamos a autenticação do Microsoft Entra ID com identidades gerenciadas para recursos do Azure para evitar o armazenamento de credenciais com seus aplicativos executados na nuvem.

Use chaves de API com cuidado. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente. Se estiver usando chaves de API, armazene-as com segurança no Cofre de Chaves do Azure, gire as chaves regularmente e restrinja o acesso ao Cofre de Chaves do Azure usando controle de acesso baseado em função e restrições de acesso à rede. Para obter mais informações sobre como usar chaves de API com segurança em seus aplicativos, consulte Chaves de API com o Cofre de Chaves do Azure.

Para obter mais informações sobre segurança de serviços de IA, consulte Autenticar solicitações para serviços de IA do Azure.

Bash
export VISION_KEY=<your_key>
Bash
export VISION_ENDPOINT=<your_endpoint>

Depois de adicionar as variáveis de ambiente, execute source ~/.bashrc a partir da janela do console para tornar as alterações efetivas.

Analisar imagem

Abra um editor de texto e copie o seguinte conteúdo para um novo arquivo. Salve o arquivo como ImageAnalysis.java

Java
import com.azure.ai.vision.imageanalysis.*;
import com.azure.ai.vision.imageanalysis.models.*;
import com.azure.core.credential.KeyCredential;
import java.util.Arrays;

public class ImageAnalysisQuickStart {

    public static void main(String[] args) {

        String endpoint = System.getenv("VISION_ENDPOINT");
        String key = System.getenv("VISION_KEY");

        if (endpoint == null || key == null) {
            System.out.println("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'.");
            System.out.println("Set them before running this sample.");
            System.exit(1);
        }

        // Create a synchronous Image Analysis client.
        ImageAnalysisClient client = new ImageAnalysisClientBuilder()
            .endpoint(endpoint)
            .credential(new KeyCredential(key))
            .buildClient();

        // This is a synchronous (blocking) call.
        ImageAnalysisResult result = client.analyzeFromUrl(
            "https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png",
            Arrays.asList(VisualFeatures.CAPTION, VisualFeatures.READ),
            new ImageAnalysisOptions().setGenderNeutralCaption(true));

        // Print analysis results to the console
        System.out.println("Image analysis results:");
        System.out.println(" Caption:");
        System.out.println("   \"" + result.getCaption().getText() + "\", Confidence "
            + String.format("%.4f", result.getCaption().getConfidence()));
        System.out.println(" Read:");
        for (DetectedTextLine line : result.getRead().getBlocks().get(0).getLines()) {
            System.out.println("   Line: '" + line.getText()
                + "', Bounding polygon " + line.getBoundingPolygon());
            for (DetectedTextWord word : line.getWords()) {
                System.out.println("     Word: '" + word.getText()
                    + "', Bounding polygon " + word.getBoundingPolygon()
                    + ", Confidence " + String.format("%.4f", word.getConfidence()));
            }
        }
    }
}

Gorjeta

O código analisa uma imagem de uma URL. Você também pode analisar uma imagem do buffer de memória do programa. Para obter mais informações, consulte o guia de instruções Analisar imagem.

Para compilar o arquivo Java, execute o seguinte comando:

Console
javac ImageAnalysis.java -cp ".;target/dependency/*"

Você deve ver o arquivo ImageAnalysis.class criado na pasta atual.

Para executar o aplicativo, execute o seguinte comando:

Console
java -cp ".;target/dependency/*" ImageAnalysis

Saída

A saída do console deve mostrar algo semelhante ao seguinte texto:

Console
Image analysis results:
 Caption:
   "a person pointing at a screen", Confidence 0.7768
 Read:
   Line: '9:35 AM', Bounding polygon [(x=131, y=130), (x=214, y=130), (x=214, y=148), (x=131, y=148)]
     Word: '9:35', Bounding polygon [(x=132, y=130), (x=172, y=131), (x=171, y=149), (x=131, y=148)], Confidence 0.9770
     Word: 'AM', Bounding polygon [(x=180, y=131), (x=203, y=131), (x=202, y=149), (x=180, y=149)], Confidence 0.9980
   Line: 'Conference room 154584354', Bounding polygon [(x=132, y=153), (x=224, y=153), (x=224, y=161), (x=132, y=160)]
     Word: 'Conference', Bounding polygon [(x=143, y=153), (x=174, y=154), (x=174, y=161), (x=143, y=161)], Confidence 0.6930
     Word: 'room', Bounding polygon [(x=176, y=154), (x=188, y=154), (x=188, y=161), (x=176, y=161)], Confidence 0.9590
     Word: '154584354', Bounding polygon [(x=192, y=154), (x=224, y=154), (x=223, y=161), (x=192, y=161)], Confidence 0.7050
   Line: ': 555-123-4567', Bounding polygon [(x=133, y=164), (x=183, y=164), (x=183, y=170), (x=133, y=170)]
     Word: ':', Bounding polygon [(x=134, y=165), (x=137, y=165), (x=136, y=171), (x=133, y=171)], Confidence 0.1620
     Word: '555-123-4567', Bounding polygon [(x=143, y=165), (x=182, y=165), (x=181, y=171), (x=143, y=171)], Confidence 0.6530
   Line: 'Town Hall', Bounding polygon [(x=545, y=178), (x=588, y=179), (x=588, y=190), (x=545, y=190)]
     Word: 'Town', Bounding polygon [(x=545, y=179), (x=569, y=180), (x=569, y=190), (x=545, y=190)], Confidence 0.9880
     Word: 'Hall', Bounding polygon [(x=571, y=180), (x=589, y=180), (x=589, y=190), (x=571, y=190)], Confidence 0.9900
   Line: '9:00 AM - 10:00 AM', Bounding polygon [(x=545, y=191), (x=596, y=191), (x=596, y=199), (x=545, y=198)]
     Word: '9:00', Bounding polygon [(x=546, y=191), (x=556, y=192), (x=556, y=199), (x=546, y=199)], Confidence 0.7580
     Word: 'AM', Bounding polygon [(x=558, y=192), (x=565, y=192), (x=564, y=199), (x=558, y=199)], Confidence 0.9890
     Word: '-', Bounding polygon [(x=567, y=192), (x=570, y=192), (x=569, y=199), (x=567, y=199)], Confidence 0.8960
     Word: '10:00', Bounding polygon [(x=571, y=192), (x=585, y=192), (x=585, y=199), (x=571, y=199)], Confidence 0.7970
     Word: 'AM', Bounding polygon [(x=587, y=192), (x=594, y=193), (x=593, y=199), (x=586, y=199)], Confidence 0.9940
   Line: 'Aaron Blaion', Bounding polygon [(x=542, y=201), (x=581, y=201), (x=581, y=207), (x=542, y=207)]
     Word: 'Aaron', Bounding polygon [(x=545, y=201), (x=560, y=202), (x=560, y=208), (x=545, y=208)], Confidence 0.7180
     Word: 'Blaion', Bounding polygon [(x=562, y=202), (x=579, y=202), (x=579, y=207), (x=562, y=207)], Confidence 0.2740
   Line: 'Daily SCRUM', Bounding polygon [(x=537, y=258), (x=574, y=259), (x=574, y=266), (x=537, y=265)]
     Word: 'Daily', Bounding polygon [(x=538, y=259), (x=551, y=259), (x=551, y=266), (x=538, y=265)], Confidence 0.4040
     Word: 'SCRUM', Bounding polygon [(x=553, y=259), (x=570, y=260), (x=570, y=265), (x=553, y=266)], Confidence 0.6970
   Line: '10:00 AM-11:00 AM', Bounding polygon [(x=535, y=266), (x=589, y=265), (x=589, y=272), (x=535, y=273)]
     Word: '10:00', Bounding polygon [(x=539, y=267), (x=553, y=266), (x=552, y=273), (x=539, y=274)], Confidence 0.2190
     Word: 'AM-11:00', Bounding polygon [(x=554, y=266), (x=578, y=266), (x=578, y=272), (x=554, y=273)], Confidence 0.1750
     Word: 'AM', Bounding polygon [(x=580, y=266), (x=587, y=266), (x=586, y=272), (x=580, y=272)], Confidence 1.0000
   Line: 'Charlene de Crum', Bounding polygon [(x=538, y=272), (x=588, y=273), (x=588, y=279), (x=538, y=279)]
     Word: 'Charlene', Bounding polygon [(x=538, y=273), (x=562, y=273), (x=562, y=280), (x=538, y=280)], Confidence 0.3220
     Word: 'de', Bounding polygon [(x=563, y=273), (x=569, y=273), (x=569, y=280), (x=563, y=280)], Confidence 0.9100
     Word: 'Crum', Bounding polygon [(x=570, y=273), (x=582, y=273), (x=583, y=280), (x=571, y=280)], Confidence 0.8710
   Line: 'Quarterly NI Handa', Bounding polygon [(x=537, y=295), (x=588, y=295), (x=588, y=302), (x=537, y=302)]
     Word: 'Quarterly', Bounding polygon [(x=539, y=296), (x=563, y=296), (x=563, y=302), (x=538, y=302)], Confidence 0.6030
     Word: 'NI', Bounding polygon [(x=564, y=296), (x=570, y=296), (x=571, y=302), (x=564, y=302)], Confidence 0.7300
     Word: 'Handa', Bounding polygon [(x=572, y=296), (x=588, y=296), (x=588, y=302), (x=572, y=302)], Confidence 0.9050
   Line: '11.00 AM-12:00 PM', Bounding polygon [(x=538, y=303), (x=587, y=303), (x=587, y=309), (x=538, y=309)]
     Word: '11.00', Bounding polygon [(x=539, y=303), (x=552, y=303), (x=553, y=309), (x=539, y=310)], Confidence 0.6710
     Word: 'AM-12:00', Bounding polygon [(x=554, y=303), (x=578, y=303), (x=578, y=309), (x=554, y=309)], Confidence 0.6560
     Word: 'PM', Bounding polygon [(x=579, y=303), (x=586, y=303), (x=586, y=309), (x=580, y=309)], Confidence 0.4540
   Line: 'Bobek Shemar', Bounding polygon [(x=538, y=310), (x=577, y=310), (x=577, y=316), (x=538, y=316)]
     Word: 'Bobek', Bounding polygon [(x=539, y=310), (x=554, y=311), (x=554, y=317), (x=539, y=317)], Confidence 0.6320
     Word: 'Shemar', Bounding polygon [(x=556, y=311), (x=576, y=311), (x=577, y=317), (x=556, y=317)], Confidence 0.2190
   Line: 'Weekly aband up', Bounding polygon [(x=538, y=332), (x=583, y=333), (x=583, y=339), (x=538, y=338)]
     Word: 'Weekly', Bounding polygon [(x=539, y=333), (x=557, y=333), (x=557, y=339), (x=539, y=339)], Confidence 0.5750
     Word: 'aband', Bounding polygon [(x=558, y=334), (x=573, y=334), (x=573, y=339), (x=558, y=339)], Confidence 0.4750
     Word: 'up', Bounding polygon [(x=574, y=334), (x=580, y=334), (x=580, y=339), (x=574, y=339)], Confidence 0.8650
   Line: '12:00 PM-1:00 PM', Bounding polygon [(x=538, y=339), (x=585, y=339), (x=585, y=346), (x=538, y=346)]
     Word: '12:00', Bounding polygon [(x=539, y=339), (x=553, y=340), (x=553, y=347), (x=539, y=346)], Confidence 0.7090
     Word: 'PM-1:00', Bounding polygon [(x=554, y=340), (x=575, y=340), (x=575, y=346), (x=554, y=347)], Confidence 0.9080
     Word: 'PM', Bounding polygon [(x=576, y=340), (x=583, y=340), (x=583, y=346), (x=576, y=346)], Confidence 0.9980
   Line: 'Danielle MarchTe', Bounding polygon [(x=538, y=346), (x=583, y=346), (x=583, y=352), (x=538, y=352)]
     Word: 'Danielle', Bounding polygon [(x=539, y=347), (x=559, y=347), (x=559, y=352), (x=539, y=353)], Confidence 0.1960
     Word: 'MarchTe', Bounding polygon [(x=560, y=347), (x=582, y=347), (x=582, y=352), (x=560, y=352)], Confidence 0.5710
   Line: 'Product reviret', Bounding polygon [(x=537, y=370), (x=578, y=370), (x=578, y=375), (x=537, y=375)]
     Word: 'Product', Bounding polygon [(x=539, y=370), (x=559, y=370), (x=559, y=376), (x=539, y=375)], Confidence 0.7000
     Word: 'reviret', Bounding polygon [(x=560, y=370), (x=578, y=371), (x=578, y=375), (x=560, y=376)], Confidence 0.2180

Clean up resources (Limpar recursos)

Se quiser limpar e remover uma assinatura de serviços do Azure AI, você pode excluir o recurso ou grupo de recursos. A exclusão do grupo de recursos também exclui quaisquer outros recursos associados a ele.

Próximos passos

Neste início rápido, você aprendeu como instalar o SDK do cliente de Análise de Imagem e fazer chamadas básicas de análise de imagem. Em seguida, saiba mais sobre os recursos da API do Analysis 4.0.

Use o SDK do cliente de Análise de Imagem para JavaScript para ler texto em uma imagem e gerar uma legenda de imagem. Este guia de início rápido analisa uma imagem remota e imprime os resultados no console.

Pacote de documentação | de referência (npm) | Amostras

Gorjeta

A API do Analysis 4.0 pode fazer muitas operações diferentes. Consulte o guia de instruções Analisar imagem para obter exemplos que mostram todos os recursos disponíveis.

Pré-requisitos

  • Uma assinatura do Azure - Crie uma gratuitamente
  • A versão atual do Node.js
  • A versão atual do navegador de internet Edge, Chrome, Firefox ou Safari.
  • Depois de ter sua assinatura do Azure, crie um recurso de Visão Computacional no portal do Azure para obter sua chave e ponto de extremidade. Para usar o recurso de legenda neste início rápido, você deve criar seu recurso em uma das regiões do Azure com suporte (consulte Legendas de imagem para obter a lista de regiões). Depois de implantar, selecione Ir para recurso.
    • Você precisa da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço Azure AI Vision.
    • Você pode usar o nível de preço gratuito (F0) para experimentar o serviço e atualizar posteriormente para um nível pago para produção.

Criar variáveis de ambiente

Neste exemplo, escreva suas credenciais em variáveis de ambiente na máquina local que executa o aplicativo.

Aceda ao portal do Azure. Se o recurso criado na seção Pré-requisitos for implantado com êxito, selecione Ir para o recurso em Próximas etapas. Você pode encontrar sua chave e ponto de extremidade em Gerenciamento de Recursos na página Chaves e Ponto de Extremidade . Sua chave de recurso não é a mesma que sua ID de assinatura do Azure.

Para definir a variável de ambiente para sua chave e ponto de extremidade, abra uma janela do console e siga as instruções para seu sistema operacional e ambiente de desenvolvimento.

  • Para definir a VISION_KEY variável de ambiente, substitua <your_key> por uma das chaves do seu recurso.
  • Para definir a variável de VISION_ENDPOINT ambiente, substitua <your_endpoint> pelo ponto de extremidade do seu recurso.

Importante

Recomendamos a autenticação do Microsoft Entra ID com identidades gerenciadas para recursos do Azure para evitar o armazenamento de credenciais com seus aplicativos executados na nuvem.

Use chaves de API com cuidado. Não inclua a chave da API diretamente no seu código e nunca a publique publicamente. Se estiver usando chaves de API, armazene-as com segurança no Cofre de Chaves do Azure, gire as chaves regularmente e restrinja o acesso ao Cofre de Chaves do Azure usando controle de acesso baseado em função e restrições de acesso à rede. Para obter mais informações sobre como usar chaves de API com segurança em seus aplicativos, consulte Chaves de API com o Cofre de Chaves do Azure.

Para obter mais informações sobre segurança de serviços de IA, consulte Autenticar solicitações para serviços de IA do Azure.

Bash
export VISION_KEY=<your_key>
Bash
export VISION_ENDPOINT=<your_endpoint>

Depois de adicionar as variáveis de ambiente, execute source ~/.bashrc a partir da janela do console para tornar as alterações efetivas.

Analisar imagem

  1. Criar uma nova aplicação Node.js

    Numa janela de consola (como cmd, PowerShell ou Bash), crie um novo diretório para a sua aplicação e navegue para a mesma.

    Console
    mkdir myapp && cd myapp
    

    Execute o comando npm init para criar uma aplicação de nó com um ficheiro package.json.

    Console
    npm init
    
  2. Instalar a biblioteca de cliente

    Instale o @azure-rest/ai-vision-image-analysis pacote npm:

    Console
    npm install @azure-rest/ai-vision-image-analysis
    

    Instale também o pacote dotenv:

    Console
    npm install dotenv
    

    O ficheiro package.json da sua aplicação será atualizado com as dependências.

  3. Crie um novo arquivo, index.js. Abra-o em um editor de texto e cole no código a seguir.

    JavaScript
    const { ImageAnalysisClient } = require('@azure-rest/ai-vision-image-analysis');
    const createClient = require('@azure-rest/ai-vision-image-analysis').default;
    const { AzureKeyCredential } = require('@azure/core-auth');
    
    // Load the .env file if it exists
    require("dotenv").config();
    
    const endpoint = process.env['VISION_ENDPOINT'];
    const key = process.env['VISION_KEY'];
    
    const credential = new AzureKeyCredential(key);
    const client = createClient(endpoint, credential);
    
    const features = [
      'Caption',
      'Read'
    ];
    
    const imageUrl = 'https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png';
    
    async function analyzeImageFromUrl() {
      const result = await client.path('/imageanalysis:analyze').post({
        body: {
            url: imageUrl
        },
        queryParameters: {
            features: features
        },
        contentType: 'application/json'
      });
    
      const iaResult = result.body;
    
      if (iaResult.captionResult) {
        console.log(`Caption: ${iaResult.captionResult.text} (confidence: ${iaResult.captionResult.confidence})`);
      }
      if (iaResult.readResult) {
        iaResult.readResult.blocks.forEach(block => console.log(`Text Block: ${JSON.stringify(block)}`));
      }
    }
    
    analyzeImageFromUrl();
    
  4. Execute a aplicação com o comando node no seu ficheiro de início rápido.

    Console
    node index.js
    

Clean up resources (Limpar recursos)

Se quiser limpar e remover uma assinatura de serviços do Azure AI, você pode excluir o recurso ou grupo de recursos. A exclusão do grupo de recursos também exclui quaisquer outros recursos associados a ele.

Próximos passos

Neste início rápido, você aprendeu como instalar a biblioteca de cliente do Image Analysis e fazer chamadas básicas de análise de imagem. Em seguida, saiba mais sobre os recursos da API de análise.

Use a API REST de análise de imagem para ler texto e gerar legendas para a imagem (somente versão 4.0).

Gorjeta

A API do Analysis 4.0 pode fazer muitas operações diferentes. Consulte o guia de instruções Analisar imagem para obter exemplos que mostram todos os recursos disponíveis.

Pré-requisitos

  • Uma assinatura do Azure - Crie uma gratuitamente
  • Depois de ter sua assinatura do Azure, crie um recurso de Visão Computacional no portal do Azure para obter sua chave e ponto de extremidade. Para usar o recurso de legenda neste início rápido, você deve criar seu recurso em determinadas regiões do Azure. Consulte Disponibilidade da região. Depois de implantar, selecione Ir para recurso.
    • Você precisará da chave e do ponto de extremidade do recurso criado para conectar seu aplicativo ao serviço Azure AI Vision. Você colará sua chave e ponto de extremidade no código abaixo mais adiante no início rápido.
    • Você pode usar o nível de preço gratuito (F0) para experimentar o serviço e atualizar posteriormente para um nível pago para produção.
  • cURL instalado

Analisar uma imagem

Para analisar uma imagem para vários recursos visuais, execute as seguintes etapas:

  1. Copie o seguinte curl comando para um editor de texto.

    Bash
    curl.exe -H "Ocp-Apim-Subscription-Key: <subscriptionKey>" -H "Content-Type: application/json" "<endpoint>/computervision/imageanalysis:analyze?features=caption,read&model-version=latest&language=en&api-version=2024-02-01" -d "{'url':'https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png'}"
    
  2. Faça as alterações seguintes ao comando, se for necessário:

    1. Substitua o valor de pela sua chave de recurso Visão <subscriptionKey> .
    2. Substitua o valor de pelo URL do ponto de extremidade do recurso Vision <endpoint> . Por exemplo: https://YourResourceName.cognitiveservices.azure.com.
    3. Opcionalmente, altere o URL da imagem no corpo do pedido (https://learn.microsoft.com/azure/ai-services/computer-vision/media/quickstarts/presentation.png) pelo URL de uma imagem diferente a ser analisada.
  3. Abra uma janela da linha de comandos.

  4. Cole o comando editado curl do editor de texto na janela do prompt de comando e execute o comando.

Examinar a resposta

Uma resposta bem-sucedida é retornada em JSON, semelhante ao exemplo a seguir:

JSON
{
    "modelVersion": "2023-10-01",
    "captionResult":
    {
        "text": "a man pointing at a screen",
        "confidence": 0.7767987847328186
    },
    "metadata":
    {
        "width": 1038,
        "height": 692
    },
    "readResult":
    {
        "blocks":
        [
            {
                "lines":
                [
                    {
                        "text": "9:35 AM",
                        "boundingPolygon": [{"x":131,"y":130},{"x":214,"y":130},{"x":214,"y":148},{"x":131,"y":148}],
                        "words": [{"text":"9:35","boundingPolygon":[{"x":132,"y":130},{"x":172,"y":131},{"x":171,"y":149},{"x":131,"y":148}],"confidence":0.977},{"text":"AM","boundingPolygon":[{"x":180,"y":131},{"x":203,"y":131},{"x":202,"y":149},{"x":180,"y":149}],"confidence":0.998}]
                    },
                    {
                        "text": "Conference room 154584354",
                        "boundingPolygon": [{"x":132,"y":153},{"x":224,"y":153},{"x":224,"y":161},{"x":132,"y":160}],
                        "words": [{"text":"Conference","boundingPolygon":[{"x":143,"y":153},{"x":174,"y":154},{"x":174,"y":161},{"x":143,"y":161}],"confidence":0.693},{"text":"room","boundingPolygon":[{"x":176,"y":154},{"x":188,"y":154},{"x":188,"y":161},{"x":176,"y":161}],"confidence":0.959},{"text":"154584354","boundingPolygon":[{"x":192,"y":154},{"x":224,"y":154},{"x":223,"y":161},{"x":192,"y":161}],"confidence":0.705}]
                    },
                    {
                        "text": ": 555-123-4567",
                        "boundingPolygon": [{"x":133,"y":164},{"x":183,"y":164},{"x":183,"y":170},{"x":133,"y":170}],
                        "words": [{"text":":","boundingPolygon":[{"x":134,"y":165},{"x":137,"y":165},{"x":136,"y":171},{"x":133,"y":171}],"confidence":0.162},{"text":"555-123-4567","boundingPolygon":[{"x":143,"y":165},{"x":182,"y":165},{"x":181,"y":171},{"x":143,"y":171}],"confidence":0.653}]
                    },
                    {
                        "text": "Town Hall",
                        "boundingPolygon": [{"x":545,"y":178},{"x":588,"y":179},{"x":588,"y":190},{"x":545,"y":190}],
                        "words": [{"text":"Town","boundingPolygon":[{"x":545,"y":179},{"x":569,"y":180},{"x":569,"y":190},{"x":545,"y":190}],"confidence":0.988},{"text":"Hall","boundingPolygon":[{"x":571,"y":180},{"x":589,"y":180},{"x":589,"y":190},{"x":571,"y":190}],"confidence":0.99}]
                    },
                    {
                        "text": "9:00 AM - 10:00 AM",
                        "boundingPolygon": [{"x":545,"y":191},{"x":596,"y":191},{"x":596,"y":199},{"x":545,"y":198}],
                        "words": [{"text":"9:00","boundingPolygon":[{"x":546,"y":191},{"x":556,"y":192},{"x":556,"y":199},{"x":546,"y":199}],"confidence":0.758},{"text":"AM","boundingPolygon":[{"x":558,"y":192},{"x":565,"y":192},{"x":564,"y":199},{"x":558,"y":199}],"confidence":0.989},{"text":"-","boundingPolygon":[{"x":567,"y":192},{"x":570,"y":192},{"x":569,"y":199},{"x":567,"y":199}],"confidence":0.896},{"text":"10:00","boundingPolygon":[{"x":571,"y":192},{"x":585,"y":192},{"x":585,"y":199},{"x":571,"y":199}],"confidence":0.797},{"text":"AM","boundingPolygon":[{"x":587,"y":192},{"x":594,"y":193},{"x":593,"y":199},{"x":586,"y":199}],"confidence":0.994}]
                    },
                    {
                        "text": "Aaron Blaion",
                        "boundingPolygon": [{"x":542,"y":201},{"x":581,"y":201},{"x":581,"y":207},{"x":542,"y":207}],
                        "words": [{"text":"Aaron","boundingPolygon":[{"x":545,"y":201},{"x":560,"y":202},{"x":560,"y":208},{"x":545,"y":208}],"confidence":0.718},{"text":"Blaion","boundingPolygon":[{"x":562,"y":202},{"x":579,"y":202},{"x":579,"y":207},{"x":562,"y":207}],"confidence":0.274}]
                    },
                    {
                        "text": "Daily SCRUM",
                        "boundingPolygon": [{"x":537,"y":258},{"x":574,"y":259},{"x":574,"y":266},{"x":537,"y":265}],
                        "words": [{"text":"Daily","boundingPolygon":[{"x":538,"y":259},{"x":551,"y":259},{"x":551,"y":266},{"x":538,"y":265}],"confidence":0.404},{"text":"SCRUM","boundingPolygon":[{"x":553,"y":259},{"x":570,"y":260},{"x":570,"y":265},{"x":553,"y":266}],"confidence":0.697}]
                    },
                    {
                        "text": "10:00 AM-11:00 AM",
                        "boundingPolygon": [{"x":535,"y":266},{"x":589,"y":265},{"x":589,"y":272},{"x":535,"y":273}],
                        "words": [{"text":"10:00","boundingPolygon":[{"x":539,"y":267},{"x":553,"y":266},{"x":552,"y":273},{"x":539,"y":274}],"confidence":0.219},{"text":"AM-11:00","boundingPolygon":[{"x":554,"y":266},{"x":578,"y":266},{"x":578,"y":272},{"x":554,"y":273}],"confidence":0.175},{"text":"AM","boundingPolygon":[{"x":580,"y":266},{"x":587,"y":266},{"x":586,"y":272},{"x":580,"y":272}],"confidence":1}]
                    },
                    {
                        "text": "Charlene de Crum",
                        "boundingPolygon": [{"x":538,"y":272},{"x":588,"y":273},{"x":588,"y":279},{"x":538,"y":279}],
                        "words": [{"text":"Charlene","boundingPolygon":[{"x":538,"y":273},{"x":562,"y":273},{"x":562,"y":280},{"x":538,"y":280}],"confidence":0.322},{"text":"de","boundingPolygon":[{"x":563,"y":273},{"x":569,"y":273},{"x":569,"y":280},{"x":563,"y":280}],"confidence":0.91},{"text":"Crum","boundingPolygon":[{"x":570,"y":273},{"x":582,"y":273},{"x":583,"y":280},{"x":571,"y":280}],"confidence":0.871}]
                    },
                    {
                        "text": "Quarterly NI Handa",
                        "boundingPolygon": [{"x":537,"y":295},{"x":588,"y":295},{"x":588,"y":302},{"x":537,"y":302}],
                        "words": [{"text":"Quarterly","boundingPolygon":[{"x":539,"y":296},{"x":563,"y":296},{"x":563,"y":302},{"x":538,"y":302}],"confidence":0.603},{"text":"NI","boundingPolygon":[{"x":564,"y":296},{"x":570,"y":296},{"x":571,"y":302},{"x":564,"y":302}],"confidence":0.73},{"text":"Handa","boundingPolygon":[{"x":572,"y":296},{"x":588,"y":296},{"x":588,"y":302},{"x":572,"y":302}],"confidence":0.905}]
                    },
                    {
                        "text": "11.00 AM-12:00 PM",
                        "boundingPolygon": [{"x":538,"y":303},{"x":587,"y":303},{"x":587,"y":309},{"x":538,"y":309}],
                        "words": [{"text":"11.00","boundingPolygon":[{"x":539,"y":303},{"x":552,"y":303},{"x":553,"y":309},{"x":539,"y":310}],"confidence":0.671},{"text":"AM-12:00","boundingPolygon":[{"x":554,"y":303},{"x":578,"y":303},{"x":578,"y":309},{"x":554,"y":309}],"confidence":0.656},{"text":"PM","boundingPolygon":[{"x":579,"y":303},{"x":586,"y":303},{"x":586,"y":309},{"x":580,"y":309}],"confidence":0.454}]
                    },
                    {
                        "text": "Bobek Shemar",
                        "boundingPolygon": [{"x":538,"y":310},{"x":577,"y":310},{"x":577,"y":316},{"x":538,"y":316}],
                        "words": [{"text":"Bobek","boundingPolygon":[{"x":539,"y":310},{"x":554,"y":311},{"x":554,"y":317},{"x":539,"y":317}],"confidence":0.632},{"text":"Shemar","boundingPolygon":[{"x":556,"y":311},{"x":576,"y":311},{"x":577,"y":317},{"x":556,"y":317}],"confidence":0.219}]
                    },
                    {
                        "text": "Weekly aband up",
                        "boundingPolygon": [{"x":538,"y":332},{"x":583,"y":333},{"x":583,"y":339},{"x":538,"y":338}],
                        "words": [{"text":"Weekly","boundingPolygon":[{"x":539,"y":333},{"x":557,"y":333},{"x":557,"y":339},{"x":539,"y":339}],"confidence":0.575},{"text":"aband","boundingPolygon":[{"x":558,"y":334},{"x":573,"y":334},{"x":573,"y":339},{"x":558,"y":339}],"confidence":0.475},{"text":"up","boundingPolygon":[{"x":574,"y":334},{"x":580,"y":334},{"x":580,"y":339},{"x":574,"y":339}],"confidence":0.865}]
                    },
                    {
                        "text": "12:00 PM-1:00 PM",
                        "boundingPolygon": [{"x":538,"y":339},{"x":585,"y":339},{"x":585,"y":346},{"x":538,"y":346}],
                        "words": [{"text":"12:00","boundingPolygon":[{"x":539,"y":339},{"x":553,"y":340},{"x":553,"y":347},{"x":539,"y":346}],"confidence":0.709},{"text":"PM-1:00","boundingPolygon":[{"x":554,"y":340},{"x":575,"y":340},{"x":575,"y":346},{"x":554,"y":347}],"confidence":0.908},{"text":"PM","boundingPolygon":[{"x":576,"y":340},{"x":583,"y":340},{"x":583,"y":346},{"x":576,"y":346}],"confidence":0.998}]
                    },
                    {
                        "text": "Danielle MarchTe",
                        "boundingPolygon": [{"x":538,"y":346},{"x":583,"y":346},{"x":583,"y":352},{"x":538,"y":352}],
                        "words": [{"text":"Danielle","boundingPolygon":[{"x":539,"y":347},{"x":559,"y":347},{"x":559,"y":352},{"x":539,"y":353}],"confidence":0.196},{"text":"MarchTe","boundingPolygon":[{"x":560,"y":347},{"x":582,"y":347},{"x":582,"y":352},{"x":560,"y":352}],"confidence":0.571}]
                    },
                    {
                        "text": "Product reviret",
                        "boundingPolygon": [{"x":537,"y":370},{"x":578,"y":370},{"x":578,"y":375},{"x":537,"y":375}],
                        "words": [{"text":"Product","boundingPolygon":[{"x":539,"y":370},{"x":559,"y":370},{"x":559,"y":376},{"x":539,"y":375}],"confidence":0.7},{"text":"reviret","boundingPolygon":[{"x":560,"y":370},{"x":578,"y":371},{"x":578,"y":375},{"x":560,"y":376}],"confidence":0.218}]
                    }
                ]
            }
        ]
    }
}

Próximos passos

Neste guia de início rápido, você aprendeu como fazer chamadas básicas de análise de imagem usando a API REST. Em seguida, saiba mais sobre os recursos da API do Analysis 4.0.

Pré-requisitos

  • Entre no Vision Studio com sua assinatura do Azure e o recurso de serviços de IA do Azure. Consulte a seção Introdução da visão geral se precisar de ajuda com esta etapa.

Analisar uma imagem

  1. Selecione a guia Analisar imagens e selecione o painel intitulado Extrair tags comuns das imagens.
  2. Para usar a experiência try-it-out, você precisa escolher um recurso e reconhecer que ele incorrerá em uso de acordo com seu nível de preço.
  3. Selecione uma imagem do conjunto disponível ou carregue a sua.
  4. Depois de selecionar sua imagem, você verá as tags detetadas aparecerem na janela de saída, juntamente com suas pontuações de confiança. Você também pode selecionar a guia JSON para ver a saída JSON que a chamada de API retorna.
  5. Abaixo da experiência try-it-out estão as próximas etapas para começar a usar esse recurso em seu próprio aplicativo.

Próximos passos

Neste início rápido, você usou o Vision Studio para executar uma tarefa básica de análise de imagem. Em seguida, saiba mais sobre os recursos da API Analisar imagem.