Atualizar o gerenciamento do espaço de trabalho para o SDK v2
O espaço de trabalho funcionalmente permanece inalterado com a plataforma de desenvolvimento V2. No entanto, há mudanças relacionadas à rede a serem observadas. Para obter detalhes, consulte Alteração de isolamento de rede com nossa nova plataforma de API no Azure Resource Manager
Este artigo fornece uma comparação de cenário(s) no SDK v1 e SDK v2.
Criar uma área de trabalho
SDK v1
from azureml.core import Workspace ws = Workspace.create( name='my_workspace', location='eastus', subscription_id = '<SUBSCRIPTION_ID>' resource_group = '<RESOURCE_GROUP>' )
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get a handle to the subscription ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group) # specify the workspace details ws = Workspace( name="my_workspace", location="eastus", display_name="My workspace", description="This example shows how to create a workspace", tags=dict(purpose="demo"), ) ml_client.workspaces.begin_create(ws)
Criar um espaço de trabalho para uso com pontos de extremidade do Azure Private Link
SDK v1
from azureml.core import Workspace ws = Workspace.create( name='my_workspace', location='eastus', subscription_id = '<SUBSCRIPTION_ID>' resource_group = '<RESOURCE_GROUP>' ) ple = PrivateEndPointConfig( name='my_private_link_endpoint', vnet_name='<VNET_NAME>', vnet_subnet_name='<VNET_SUBNET_NAME>', vnet_subscription_id='<SUBSCRIPTION_ID>', vnet_resource_group='<RESOURCE_GROUP>' ) ws.add_private_endpoint(ple, private_endpoint_auto_approval=True)
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get a handle to the subscription ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group) ws = Workspace( name="private_link_endpoint_workspace, location="eastus", display_name="Private Link endpoint workspace", description="When using private link, you must set the image_build_compute property to a cluster name to use for Docker image environment building. You can also specify whether the workspace should be accessible over the internet.", image_build_compute="cpu-compute", public_network_access="Disabled", tags=dict(purpose="demonstration"), ) ml_client.workspaces.begin_create(ws)
Carregar/conectar ao espaço de trabalho usando parâmetros
SDK v1
from azureml.core import Workspace ws = Workspace.from_config() # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get handle on the workspace ws = Workspace.get( subscription_id='<SUBSCRIPTION_ID>', resource_group='<RESOURCE_GROUP>', name='my_workspace', )
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential # specify the details of your subscription subscription_id = "<SUBSCRIPTION_ID>" resource_group = "<RESOURCE_GROUP>" # get handle on the workspace ws = MLClient( DefaultAzureCredential(), subscription_id='<SUBSCRIPTION_ID>', resource_group_name='<RESOURCE_GROUP>', workspace_name='my_workspace' )
Carregar/conectar ao espaço de trabalho usando o arquivo de configuração
SDK v1
from azureml.core import Workspace ws = Workspace.from_config() ws.get_details()
SDK v2
from azure.ai.ml import MLClient from azure.ai.ml.entities import Workspace from azure.identity import DefaultAzureCredential ws = MLClient.from_config( DefaultAzureCredential() )
Mapeamento das principais funcionalidades no SDK v1 e SDK v2
Funcionalidade no SDK v1 | Mapeamento aproximado no SDK v2 |
---|---|
Método/API no SDK v1 (use links para ref docs) | Método/API no SDK v2 (use links para ref docs) |
Documentos relacionados
Para obter mais informações, consulte: