__cpuid, __cpuidex
Seção específica da Microsoft
Gera a instrução cpuid
, que está disponível no x86 e no x64. Essa instrução consulta o processador para saber informações sobre suporte a recursos e tipo de CPU.
Sintaxe
void __cpuid(
int cpuInfo[4],
int function_id
);
void __cpuidex(
int cpuInfo[4],
int function_id,
int subfunction_id
);
Parâmetros
cpuInfo
[out] Uma matriz de quatro inteiros contendo as informações retornadas em EAX, EBX, ECX e EDX sobre os recursos de CPU com suporte.
function_id
[in] Um código que especifica as informações a serem recuperadas, enviadas no EAX.
subfunction_id
[in] Um código adicional que especifica as informações a serem recuperadas, enviadas no ECX.
Requisitos
Intrinsic | Arquitetura |
---|---|
__cpuid |
x86, x64 |
__cpuidex |
x86, x64 |
Arquivo de cabeçalho<intrin.h>
Comentários
Esse intrínseco armazena os recursos com suporte e as informações de CPU retornadas pela instrução cpuid
em cpuInfo, uma matriz de quatro inteiros de 32 bits preenchida com os valores dos registros EAX, EBX, ECX e EDX (nessa ordem). As informações retornadas têm diferentes significados dependendo do valor fornecido como o parâmetro function_id. As informações retornadas com diferentes valores de function_id dependem do processador.
O intrínseco __cpuid
limpa o registro do ECX antes de chamar a instrução cpuid
. O intrínseco __cpuidex
define o valor do registro ECX para subfunction_id antes de gerar a instrução cpuid
. Isso permite coletar informações adicionais sobre o processador.
Para obter mais informações sobre os parâmetros específicos a serem usados e os valores retornados por esses intrínsecos em processadores Intel, consulte a documentação da instrução cpuid
em Volume 2 do Manual de Desenvolvedores de Software das Arquiteturas Intel 64 e IA-32: Referência do Conjunto de Instruções e Referência de Programação de Extensões do Conjunto de Instruções da Arquitetura Intel. A documentação da Intel usa os termos "folha" e "subfolha" para os parâmetros function_id e subfunction_id enviados no EAX e no ECX.
Para obter mais informações sobre parâmetros específicos a serem usados e os valores retornados pelos intrínsecos em processadores AMD, consulte a documentação da instrução cpuid
no Volume 3 do Manual do Programador da Arquitetura AMD64: Instruções de Uso Geral e do Sistema e nos Guias de Revisão das famílias de processadores específicas. Para obter links para esses documentos e outras informações, consulte a página Guias do desenvolvedor, manuais e documentos ISA da AMD. A documentação da AMD usa os termos "número de função" e "número de subfunção" para os parâmetros function_id e subfunction_id enviados no EAX e no ECX.
Quando o argumento function_id é 0, cpuInfo[0] retorne o valor mais alto não estendido disponível de function_id com suporte do processador. O fabricante do processador está codificado em cpuInfo[1], cpuInfo[2] em cpuInfo[3].
Suporte para extensões de conjunto de instruções específicas e recursos de CPU está codificado nos resultados de cpuInfo retornados para valores de function_id maiores. Para obter mais informações, consulte os manuais citados acima e o exemplo de código a seguir.
Alguns processadores oferecem suporte a informações de CPUID de Função Estendida. Quando houver suporte, valores de function_id começando em 0x80000000 poderão ser usados para retornar informações. Para determinar o valor significativo máximo permitido, defina function_id como 0x80000000. O valor máximo de function_id com suporte para funções estendidas será gravado em cpuInfo[0].
Exemplo
Este exemplo mostra algumas das informações disponíveis por meio dos intrínsecos __cpuid
e __cpuidex
. O aplicativo lista as extensões de conjunto de instruções suportadas pelo processador atual. A saída mostra um resultado possível para um processador específico.
// InstructionSet.cpp
// Compile by using: cl /EHsc /W4 InstructionSet.cpp
// processor: x86, x64
// Uses the __cpuid intrinsic to get information about
// CPU extended instruction set support.
#include <iostream>
#include <vector>
#include <bitset>
#include <array>
#include <string>
#include <intrin.h>
class InstructionSet
{
// forward declarations
class InstructionSet_Internal;
public:
// getters
static std::string Vendor(void) { return CPU_Rep.vendor_; }
static std::string Brand(void) { return CPU_Rep.brand_; }
static bool SSE3(void) { return CPU_Rep.f_1_ECX_[0]; }
static bool PCLMULQDQ(void) { return CPU_Rep.f_1_ECX_[1]; }
static bool MONITOR(void) { return CPU_Rep.f_1_ECX_[3]; }
static bool SSSE3(void) { return CPU_Rep.f_1_ECX_[9]; }
static bool FMA(void) { return CPU_Rep.f_1_ECX_[12]; }
static bool CMPXCHG16B(void) { return CPU_Rep.f_1_ECX_[13]; }
static bool SSE41(void) { return CPU_Rep.f_1_ECX_[19]; }
static bool SSE42(void) { return CPU_Rep.f_1_ECX_[20]; }
static bool MOVBE(void) { return CPU_Rep.f_1_ECX_[22]; }
static bool POPCNT(void) { return CPU_Rep.f_1_ECX_[23]; }
static bool AES(void) { return CPU_Rep.f_1_ECX_[25]; }
static bool XSAVE(void) { return CPU_Rep.f_1_ECX_[26]; }
static bool OSXSAVE(void) { return CPU_Rep.f_1_ECX_[27]; }
static bool AVX(void) { return CPU_Rep.f_1_ECX_[28]; }
static bool F16C(void) { return CPU_Rep.f_1_ECX_[29]; }
static bool RDRAND(void) { return CPU_Rep.f_1_ECX_[30]; }
static bool MSR(void) { return CPU_Rep.f_1_EDX_[5]; }
static bool CX8(void) { return CPU_Rep.f_1_EDX_[8]; }
static bool SEP(void) { return CPU_Rep.f_1_EDX_[11]; }
static bool CMOV(void) { return CPU_Rep.f_1_EDX_[15]; }
static bool CLFSH(void) { return CPU_Rep.f_1_EDX_[19]; }
static bool MMX(void) { return CPU_Rep.f_1_EDX_[23]; }
static bool FXSR(void) { return CPU_Rep.f_1_EDX_[24]; }
static bool SSE(void) { return CPU_Rep.f_1_EDX_[25]; }
static bool SSE2(void) { return CPU_Rep.f_1_EDX_[26]; }
static bool FSGSBASE(void) { return CPU_Rep.f_7_EBX_[0]; }
static bool BMI1(void) { return CPU_Rep.f_7_EBX_[3]; }
static bool HLE(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[4]; }
static bool AVX2(void) { return CPU_Rep.f_7_EBX_[5]; }
static bool BMI2(void) { return CPU_Rep.f_7_EBX_[8]; }
static bool ERMS(void) { return CPU_Rep.f_7_EBX_[9]; }
static bool INVPCID(void) { return CPU_Rep.f_7_EBX_[10]; }
static bool RTM(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_7_EBX_[11]; }
static bool AVX512F(void) { return CPU_Rep.f_7_EBX_[16]; }
static bool RDSEED(void) { return CPU_Rep.f_7_EBX_[18]; }
static bool ADX(void) { return CPU_Rep.f_7_EBX_[19]; }
static bool AVX512PF(void) { return CPU_Rep.f_7_EBX_[26]; }
static bool AVX512ER(void) { return CPU_Rep.f_7_EBX_[27]; }
static bool AVX512CD(void) { return CPU_Rep.f_7_EBX_[28]; }
static bool SHA(void) { return CPU_Rep.f_7_EBX_[29]; }
static bool PREFETCHWT1(void) { return CPU_Rep.f_7_ECX_[0]; }
static bool LAHF(void) { return CPU_Rep.f_81_ECX_[0]; }
static bool LZCNT(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_ECX_[5]; }
static bool ABM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[5]; }
static bool SSE4a(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[6]; }
static bool XOP(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[11]; }
static bool TBM(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_ECX_[21]; }
static bool SYSCALL(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[11]; }
static bool MMXEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[22]; }
static bool RDTSCP(void) { return CPU_Rep.isIntel_ && CPU_Rep.f_81_EDX_[27]; }
static bool _3DNOWEXT(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[30]; }
static bool _3DNOW(void) { return CPU_Rep.isAMD_ && CPU_Rep.f_81_EDX_[31]; }
private:
static const InstructionSet_Internal CPU_Rep;
class InstructionSet_Internal
{
public:
InstructionSet_Internal()
: nIds_{ 0 },
nExIds_{ 0 },
isIntel_{ false },
isAMD_{ false },
f_1_ECX_{ 0 },
f_1_EDX_{ 0 },
f_7_EBX_{ 0 },
f_7_ECX_{ 0 },
f_81_ECX_{ 0 },
f_81_EDX_{ 0 },
data_{},
extdata_{}
{
//int cpuInfo[4] = {-1};
std::array<int, 4> cpui;
// Calling __cpuid with 0x0 as the function_id argument
// gets the number of the highest valid function ID.
__cpuid(cpui.data(), 0);
nIds_ = cpui[0];
for (int i = 0; i <= nIds_; ++i)
{
__cpuidex(cpui.data(), i, 0);
data_.push_back(cpui);
}
// Capture vendor string
char vendor[0x20];
memset(vendor, 0, sizeof(vendor));
*reinterpret_cast<int*>(vendor) = data_[0][1];
*reinterpret_cast<int*>(vendor + 4) = data_[0][3];
*reinterpret_cast<int*>(vendor + 8) = data_[0][2];
vendor_ = vendor;
if (vendor_ == "GenuineIntel")
{
isIntel_ = true;
}
else if (vendor_ == "AuthenticAMD")
{
isAMD_ = true;
}
// load bitset with flags for function 0x00000001
if (nIds_ >= 1)
{
f_1_ECX_ = data_[1][2];
f_1_EDX_ = data_[1][3];
}
// load bitset with flags for function 0x00000007
if (nIds_ >= 7)
{
f_7_EBX_ = data_[7][1];
f_7_ECX_ = data_[7][2];
}
// Calling __cpuid with 0x80000000 as the function_id argument
// gets the number of the highest valid extended ID.
__cpuid(cpui.data(), 0x80000000);
nExIds_ = cpui[0];
char brand[0x40];
memset(brand, 0, sizeof(brand));
for (int i = 0x80000000; i <= nExIds_; ++i)
{
__cpuidex(cpui.data(), i, 0);
extdata_.push_back(cpui);
}
// load bitset with flags for function 0x80000001
if (nExIds_ >= 0x80000001)
{
f_81_ECX_ = extdata_[1][2];
f_81_EDX_ = extdata_[1][3];
}
// Interpret CPU brand string if reported
if (nExIds_ >= 0x80000004)
{
memcpy(brand, extdata_[2].data(), sizeof(cpui));
memcpy(brand + 16, extdata_[3].data(), sizeof(cpui));
memcpy(brand + 32, extdata_[4].data(), sizeof(cpui));
brand_ = brand;
}
};
int nIds_;
int nExIds_;
std::string vendor_;
std::string brand_;
bool isIntel_;
bool isAMD_;
std::bitset<32> f_1_ECX_;
std::bitset<32> f_1_EDX_;
std::bitset<32> f_7_EBX_;
std::bitset<32> f_7_ECX_;
std::bitset<32> f_81_ECX_;
std::bitset<32> f_81_EDX_;
std::vector<std::array<int, 4>> data_;
std::vector<std::array<int, 4>> extdata_;
};
};
// Initialize static member data
const InstructionSet::InstructionSet_Internal InstructionSet::CPU_Rep;
// Print out supported instruction set extensions
int main()
{
auto& outstream = std::cout;
auto support_message = [&outstream](std::string isa_feature, bool is_supported) {
outstream << isa_feature << (is_supported ? " supported" : " not supported") << std::endl;
};
std::cout << InstructionSet::Vendor() << std::endl;
std::cout << InstructionSet::Brand() << std::endl;
support_message("3DNOW", InstructionSet::_3DNOW());
support_message("3DNOWEXT", InstructionSet::_3DNOWEXT());
support_message("ABM", InstructionSet::ABM());
support_message("ADX", InstructionSet::ADX());
support_message("AES", InstructionSet::AES());
support_message("AVX", InstructionSet::AVX());
support_message("AVX2", InstructionSet::AVX2());
support_message("AVX512CD", InstructionSet::AVX512CD());
support_message("AVX512ER", InstructionSet::AVX512ER());
support_message("AVX512F", InstructionSet::AVX512F());
support_message("AVX512PF", InstructionSet::AVX512PF());
support_message("BMI1", InstructionSet::BMI1());
support_message("BMI2", InstructionSet::BMI2());
support_message("CLFSH", InstructionSet::CLFSH());
support_message("CMPXCHG16B", InstructionSet::CMPXCHG16B());
support_message("CX8", InstructionSet::CX8());
support_message("ERMS", InstructionSet::ERMS());
support_message("F16C", InstructionSet::F16C());
support_message("FMA", InstructionSet::FMA());
support_message("FSGSBASE", InstructionSet::FSGSBASE());
support_message("FXSR", InstructionSet::FXSR());
support_message("HLE", InstructionSet::HLE());
support_message("INVPCID", InstructionSet::INVPCID());
support_message("LAHF", InstructionSet::LAHF());
support_message("LZCNT", InstructionSet::LZCNT());
support_message("MMX", InstructionSet::MMX());
support_message("MMXEXT", InstructionSet::MMXEXT());
support_message("MONITOR", InstructionSet::MONITOR());
support_message("MOVBE", InstructionSet::MOVBE());
support_message("MSR", InstructionSet::MSR());
support_message("OSXSAVE", InstructionSet::OSXSAVE());
support_message("PCLMULQDQ", InstructionSet::PCLMULQDQ());
support_message("POPCNT", InstructionSet::POPCNT());
support_message("PREFETCHWT1", InstructionSet::PREFETCHWT1());
support_message("RDRAND", InstructionSet::RDRAND());
support_message("RDSEED", InstructionSet::RDSEED());
support_message("RDTSCP", InstructionSet::RDTSCP());
support_message("RTM", InstructionSet::RTM());
support_message("SEP", InstructionSet::SEP());
support_message("SHA", InstructionSet::SHA());
support_message("SSE", InstructionSet::SSE());
support_message("SSE2", InstructionSet::SSE2());
support_message("SSE3", InstructionSet::SSE3());
support_message("SSE4.1", InstructionSet::SSE41());
support_message("SSE4.2", InstructionSet::SSE42());
support_message("SSE4a", InstructionSet::SSE4a());
support_message("SSSE3", InstructionSet::SSSE3());
support_message("SYSCALL", InstructionSet::SYSCALL());
support_message("TBM", InstructionSet::TBM());
support_message("XOP", InstructionSet::XOP());
support_message("XSAVE", InstructionSet::XSAVE());
}
GenuineIntel
Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz
3DNOW not supported
3DNOWEXT not supported
ABM not supported
ADX not supported
AES supported
AVX supported
AVX2 not supported
AVX512CD not supported
AVX512ER not supported
AVX512F not supported
AVX512PF not supported
BMI1 not supported
BMI2 not supported
CLFSH supported
CMPXCHG16B supported
CX8 supported
ERMS not supported
F16C not supported
FMA not supported
FSGSBASE not supported
FXSR supported
HLE not supported
INVPCID not supported
LAHF supported
LZCNT not supported
MMX supported
MMXEXT not supported
MONITOR not supported
MOVBE not supported
MSR supported
OSXSAVE supported
PCLMULQDQ supported
POPCNT supported
PREFETCHWT1 not supported
RDRAND not supported
RDSEED not supported
RDTSCP supported
RTM not supported
SEP supported
SHA not supported
SSE supported
SSE2 supported
SSE3 supported
SSE4.1 supported
SSE4.2 supported
SSE4a not supported
SSSE3 supported
SYSCALL supported
TBM not supported
XOP not supported
XSAVE supported
Fim da seção específica da Microsoft