ImageEstimatorsCatalog.LoadImages Método
Definição
Importante
Algumas informações se referem a produtos de pré-lançamento que podem ser substancialmente modificados antes do lançamento. A Microsoft não oferece garantias, expressas ou implícitas, das informações aqui fornecidas.
Crie um ImageLoadingEstimator, que carrega os dados da coluna especificada em inputColumnName
como uma imagem para uma nova coluna: outputColumnName
.
public static Microsoft.ML.Data.ImageLoadingEstimator LoadImages (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string imageFolder, string inputColumnName = default);
static member LoadImages : Microsoft.ML.TransformsCatalog * string * string * string -> Microsoft.ML.Data.ImageLoadingEstimator
<Extension()>
Public Function LoadImages (catalog As TransformsCatalog, outputColumnName As String, imageFolder As String, Optional inputColumnName As String = Nothing) As ImageLoadingEstimator
Parâmetros
- catalog
- TransformsCatalog
O catálogo da transformação.
- outputColumnName
- String
Nome da coluna resultante da transformação de inputColumnName
.
O tipo de dados dessa coluna será MLImage.
- imageFolder
- String
Pasta em que procurar imagens.
- inputColumnName
- String
Nome da coluna com caminhos para as imagens a serem carregadas. Esse avaliador opera em dados de texto.
Retornos
Exemplos
using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class LoadImages
{
// Loads the images of the imagesFolder into an IDataView.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Downloading a few images, and an images.tsv file, which contains a
// list of the files from the dotnet/machinelearning/test/data/images/.
// If you inspect the fileSystem, after running this line, an "images"
// folder will be created, containing 4 images, and a .tsv file
// enumerating the images.
var imagesDataFile = Microsoft.ML.SamplesUtils.DatasetUtils
.GetSampleImages();
// Preview of the content of the images.tsv file
//
// imagePath imageType
// tomato.bmp tomato
// banana.jpg banana
// hotdog.jpg hotdog
// tomato.jpg tomato
var data = mlContext.Data.CreateTextLoader(new TextLoader.Options()
{
Columns = new[]
{
new TextLoader.Column("ImagePath", DataKind.String, 0),
new TextLoader.Column("Name", DataKind.String, 1),
}
}).Load(imagesDataFile);
var imagesFolder = Path.GetDirectoryName(imagesDataFile);
// Image loading pipeline.
var pipeline = mlContext.Transforms.LoadImages("ImageObject",
imagesFolder, "ImagePath");
var transformedData = pipeline.Fit(data).Transform(data);
PrintColumns(transformedData);
// Preview the transformedData.
// ImagePath Name ImageObject
// tomato.bmp tomato {Width=800, Height=534}
// banana.jpg banana {Width=800, Height=288}
// hotdog.jpg hotdog {Width=800, Height=391}
// tomato.jpg tomato {Width=800, Height=534}
}
private static void PrintColumns(IDataView transformedData)
{
// The transformedData IDataView contains the loaded images now.
Console.WriteLine("{0, -25} {1, -25} {2, -25}", "ImagePath", "Name",
"ImageObject");
using (var cursor = transformedData.GetRowCursor(transformedData
.Schema))
{
// Note that it is best to get the getters and values *before*
// iteration, so as to facilitate buffer sharing (if applicable),
// and column-type validation once, rather than many times.
ReadOnlyMemory<char> imagePath = default;
ReadOnlyMemory<char> name = default;
MLImage imageObject = null;
var imagePathGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["ImagePath"]);
var nameGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["Name"]);
var imageObjectGetter = cursor.GetGetter<MLImage>(cursor.Schema[
"ImageObject"]);
while (cursor.MoveNext())
{
imagePathGetter(ref imagePath);
nameGetter(ref name);
imageObjectGetter(ref imageObject);
Console.WriteLine("{0, -25} {1, -25} {2, -25}",
imagePath, name,
$"Width={imageObject.Width}, Height={imageObject.Height}");
}
// Dispose the image.
imageObject.Dispose();
}
}
}
}