Partilhar via


TimeSeriesCatalog.ForecastBySsa Método

Definição

Modelo de SSA (Singular Spectrum Analysis) para previsão de série temporal não variável. Para obter os detalhes do modelo, consulte http://arxiv.org/pdf/1206.6910.pdf.

public static Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator ForecastBySsa (this Microsoft.ML.ForecastingCatalog catalog, string outputColumnName, string inputColumnName, int windowSize, int seriesLength, int trainSize, int horizon, bool isAdaptive = false, float discountFactor = 1, Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod rankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, int? rank = default, int? maxRank = default, bool shouldStabilize = true, bool shouldMaintainInfo = false, Microsoft.ML.Transforms.TimeSeries.GrowthRatio? maxGrowth = default, string confidenceLowerBoundColumn = default, string confidenceUpperBoundColumn = default, float confidenceLevel = 0.95, bool variableHorizon = false);
static member ForecastBySsa : Microsoft.ML.ForecastingCatalog * string * string * int * int * int * int * bool * single * Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod * Nullable<int> * Nullable<int> * bool * bool * Nullable<Microsoft.ML.Transforms.TimeSeries.GrowthRatio> * string * string * single * bool -> Microsoft.ML.Transforms.TimeSeries.SsaForecastingEstimator
<Extension()>
Public Function ForecastBySsa (catalog As ForecastingCatalog, outputColumnName As String, inputColumnName As String, windowSize As Integer, seriesLength As Integer, trainSize As Integer, horizon As Integer, Optional isAdaptive As Boolean = false, Optional discountFactor As Single = 1, Optional rankSelectionMethod As RankSelectionMethod = Microsoft.ML.Transforms.TimeSeries.RankSelectionMethod.Exact, Optional rank As Nullable(Of Integer) = Nothing, Optional maxRank As Nullable(Of Integer) = Nothing, Optional shouldStabilize As Boolean = true, Optional shouldMaintainInfo As Boolean = false, Optional maxGrowth As Nullable(Of GrowthRatio) = Nothing, Optional confidenceLowerBoundColumn As String = Nothing, Optional confidenceUpperBoundColumn As String = Nothing, Optional confidenceLevel As Single = 0.95, Optional variableHorizon As Boolean = false) As SsaForecastingEstimator

Parâmetros

catalog
ForecastingCatalog

Catálogo.

outputColumnName
String

Nome da coluna resultante da transformação de inputColumnName.

inputColumnName
String

Nome da coluna a ser transformada. Se definido como null, o valor do outputColumnName será usado como origem. O vetor contém Alerta, Pontuação Bruta, Valor P como três primeiros valores.

windowSize
Int32

O comprimento da janela na série para criar a matriz de trajetória (parâmetro L).

seriesLength
Int32

O comprimento da série que é mantido no buffer para modelagem (parâmetro N).

trainSize
Int32

O comprimento da série desde o início usado para treinamento.

horizon
Int32

O número de valores a serem previstos.

isAdaptive
Boolean

O sinalizador que determina se o modelo é adaptável.

discountFactor
Single

O fator de desconto em [0,1] usado para atualizações online.

rankSelectionMethod
RankSelectionMethod

O método de seleção de classificação.

rank
Nullable<Int32>

A classificação desejada do subespaço usado para projeção SSA (parâmetro r). Esse parâmetro deve estar no intervalo em [1, windowSize]. Se definido como nulo, a classificação será determinada automaticamente com base na minimização de erro de previsão.

maxRank
Nullable<Int32>

A classificação máxima considerada durante o processo de seleção de classificação. Se não for fornecido (ou seja, definido como nulo), ele será definido como windowSize - 1.

shouldStabilize
Boolean

O sinalizador que determina se o modelo deve ser estabilizado.

shouldMaintainInfo
Boolean

O sinalizador que determina se as informações de meta para o modelo precisam ser mantidas.

maxGrowth
Nullable<GrowthRatio>

O crescimento máximo na tendência exponencial.

confidenceLowerBoundColumn
String

O nome da coluna de limite inferior do intervalo de confiança. Se não for especificado, os intervalos de confiança não serão calculados.

confidenceUpperBoundColumn
String

O nome da coluna de limite superior do intervalo de confiança. Se não for especificado, os intervalos de confiança não serão calculados.

confidenceLevel
Single

O nível de confiança para previsão.

variableHorizon
Boolean

Defina isso como true se o horizonte mudar após o treinamento (no momento da previsão).

Retornos

Exemplos

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class Forecasting
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot) and then does forecasting.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern.
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup arguments.
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ForecastResult.Forecast);

            // Instantiate the forecasting model.
            var model = ml.Forecasting.ForecastBySsa(outputColumnName,
                inputColumnName, 5, 11, data.Count, 5);

            // Train.
            var transformer = model.Fit(dataView);

            // Forecast next five values.
            var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
                ForecastResult>(ml);

            var forecast = forecastEngine.Predict();

            Console.WriteLine($"Forecasted values:");
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // Forecasted values:
            // [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]

            // Update with new observations.
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));

            // Checkpoint.
            forecastEngine.CheckPoint(ml, "model.zip");

            // Load the checkpointed model from disk.
            // Load the model.
            ITransformer modelCopy;
            using (var file = File.OpenRead("model.zip"))
                modelCopy = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
                TimeSeriesData, ForecastResult>(ml);

            // Forecast with the checkpointed model loaded from disk.
            forecast = forecastEngineCopy.Predict();
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

            // Forecast with the original model(that was checkpointed to disk).
            forecast = forecastEngine.Predict();
            Console.WriteLine("[{0}]", string.Join(", ", forecast.Forecast));
            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]

        }

        class ForecastResult
        {
            public float[] Forecast { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Transforms.TimeSeries;

namespace Samples.Dynamic
{
    public static class ForecastingWithConfidenceInternal
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot) and then does forecasting.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern.
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup arguments.
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ForecastResult.Forecast);

            // Instantiate the forecasting model.
            var model = ml.Forecasting.ForecastBySsa(outputColumnName,
                inputColumnName, 5, 11, data.Count, 5,
                confidenceLevel: 0.95f,
                confidenceLowerBoundColumn: "ConfidenceLowerBound",
                confidenceUpperBoundColumn: "ConfidenceUpperBound");

            // Train.
            var transformer = model.Fit(dataView);

            // Forecast next five values.
            var forecastEngine = transformer.CreateTimeSeriesEngine<TimeSeriesData,
                ForecastResult>(ml);

            var forecast = forecastEngine.Predict();

            PrintForecastValuesAndIntervals(forecast.Forecast, forecast
                .ConfidenceLowerBound, forecast.ConfidenceUpperBound);
            // Forecasted values:
            // [1.977226, 1.020494, 1.760543, 3.437509, 4.266461]
            // Confidence intervals:
            // [0.3451088 - 3.609343] [-0.7967533 - 2.83774] [-0.058467 - 3.579552] [1.61505 - 5.259968] [2.349299 - 6.183623]

            // Update with new observations.
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));
            forecastEngine.Predict(new TimeSeriesData(0));

            // Checkpoint.
            forecastEngine.CheckPoint(ml, "model.zip");

            // Load the checkpointed model from disk.
            // Load the model.
            ITransformer modelCopy;
            using (var file = File.OpenRead("model.zip"))
                modelCopy = ml.Model.Load(file, out DataViewSchema schema);

            // We must create a new prediction engine from the persisted model.
            var forecastEngineCopy = modelCopy.CreateTimeSeriesEngine<
                TimeSeriesData, ForecastResult>(ml);

            // Forecast with the checkpointed model loaded from disk.
            forecast = forecastEngineCopy.Predict();
            PrintForecastValuesAndIntervals(forecast.Forecast, forecast
                .ConfidenceLowerBound, forecast.ConfidenceUpperBound);

            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
            // Confidence intervals:
            // [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]

            // Forecast with the original model(that was checkpointed to disk).
            forecast = forecastEngine.Predict();
            PrintForecastValuesAndIntervals(forecast.Forecast,
                forecast.ConfidenceLowerBound, forecast.ConfidenceUpperBound);

            // [1.791331, 1.255525, 0.3060154, -0.200446, 0.5657795]
            // Confidence intervals:
            // [0.1592142 - 3.423448] [-0.5617217 - 3.072772] [-1.512994 - 2.125025] [-2.022905 - 1.622013] [-1.351382 - 2.482941]
        }

        static void PrintForecastValuesAndIntervals(float[] forecast, float[]
            confidenceIntervalLowerBounds, float[] confidenceIntervalUpperBounds)
        {
            Console.WriteLine($"Forecasted values:");
            Console.WriteLine("[{0}]", string.Join(", ", forecast));
            Console.WriteLine($"Confidence intervals:");
            for (int index = 0; index < forecast.Length; index++)
                Console.Write($"[{confidenceIntervalLowerBounds[index]} -" +
                    $" {confidenceIntervalUpperBounds[index]}] ");
            Console.WriteLine();
        }

        class ForecastResult
        {
            public float[] Forecast { get; set; }
            public float[] ConfidenceLowerBound { get; set; }
            public float[] ConfidenceUpperBound { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Aplica-se a