dsl Pacote
Funções
pipeline
Crie um pipeline que contenha todos os nós de componente definidos nesta função.
pipeline(func: Callable[[P], T] | None = None, *, name: str | None = None, version: str | None = None, display_name: str | None = None, description: str | None = None, experiment_name: str | None = None, tags: Dict[str, str] | None = None, **kwargs) -> Callable[[Callable[[P], T]], Callable[[P], PipelineJob]] | Callable[[P], PipelineJob]
Parâmetros
- name
- str
O nome do componente do pipeline é predefinido para nome da função.
- version
- str
A versão do componente do pipeline é predefinida para "1".
- display_name
- str
O nome a apresentar do componente de pipeline, predefine o nome da função.
- description
- str
A descrição do pipeline incorporado.
- experiment_name
- str
Nome da experimentação em que a tarefa será criada, se nenhuma for fornecida, a experimentação será definida como diretório atual.
- kwargs
- dict
Um dicionário de parâmetros de configuração adicionais.
Devoluções
Ambas
- Um decorador, se func for Nenhum
- O func decorado
Tipo de retorno
Exemplos
Mostra como criar um pipeline com este decorador.
from azure.ai.ml import load_component
from azure.ai.ml.dsl import pipeline
component_func = load_component(
source="./sdk/ml/azure-ai-ml/tests/test_configs/components/helloworld_component.yml"
)
# Define a pipeline with decorator
@pipeline(name="sample_pipeline", description="pipeline description")
def sample_pipeline_func(pipeline_input1, pipeline_input2):
# component1 and component2 will be added into the current pipeline
component1 = component_func(component_in_number=pipeline_input1, component_in_path=uri_file_input)
component2 = component_func(component_in_number=pipeline_input2, component_in_path=uri_file_input)
# A decorated pipeline function needs to return outputs.
# In this case, the pipeline has two outputs: component1's output1 and component2's output1,
# and let's rename them to 'pipeline_output1' and 'pipeline_output2'
return {
"pipeline_output1": component1.outputs.component_out_path,
"pipeline_output2": component2.outputs.component_out_path,
}
# E.g.: This call returns a pipeline job with nodes=[component1, component2],
pipeline_job = sample_pipeline_func(
pipeline_input1=1.0,
pipeline_input2=2.0,
)
ml_client.jobs.create_or_update(pipeline_job, experiment_name="pipeline_samples", compute="cpu-cluster")
Colabore connosco no GitHub
A origem deste conteúdo pode ser encontrada no GitHub, onde também pode criar e rever problemas e pedidos Pull. Para mais informações, consulte o nosso guia do contribuidor.
Azure SDK for Python