Partilhar via


Caminhando manualmente em uma pilha

Em alguns casos, a função de rastreamento de pilha falhará no depurador. Isso pode ser causado por uma chamada para um endereço inválido que fez com que o depurador perdesse o local do endereço de retorno; ou você pode ter se deparado com um ponteiro de pilha para o qual não é possível obter diretamente um rastreamento de pilha; ou pode haver algum outro problema de depurador. De qualquer forma, ser capaz de andar manualmente em uma pilha geralmente é valioso.

O conceito básico é bastante simples: descarte o ponteiro de pilha, descubra onde os módulos são carregados, encontre possíveis endereços de função e verifique se cada entrada de pilha possível faz uma chamada para a próxima.

Antes de passar por um exemplo, é importante observar que o comando kb (Display Stack Backtrace) tem um recurso adicional em sistemas Intel. Ao fazer um kb=[ebp] [eip] [esp], o depurador exibirá o rastreamento de pilha do quadro com os valores fornecidos para ponteiro base, ponteiro de instrução e ponteiro de pilha, respectivamente.

Para o exemplo, uma falha que realmente fornece um rastreamento de pilha é usada para que os resultados possam ser verificados no final.

A primeira etapa é descobrir quais módulos são carregados onde. Isso é feito com o comando x (Examinar Símbolos) (alguns símbolos são editados por motivos de comprimento):

kd> x *! 
start    end        module name
77f70000 77fb8000   ntdll     (C:\debug\ntdll.dll, \\ntstress\symbols\dll\ntdll.DBG)
80010000 80012320   Aha154x   (load from Aha154x.sys deferred)
80013000 8001aa60   SCSIPORT  (load from SCSIPORT.SYS deferred)
8001b000 8001fba0   Scsidisk  (load from Scsidisk.sys deferred)

80100000 801b7b40   NT        (ntoskrnl.exe, \\ntstress\symbols\exe\ntoskrnl.DBG)
802f0000 8033c000   Ntfs      (load from Ntfs.sys deferred)
80400000 8040c000   hal       (load from hal.dll deferred)
fe4c0000 fe4c38c0   vga       (load from vga.sys deferred)
fe4d0000 fe4d3e60   VIDEOPRT  (load from VIDEOPRT.SYS deferred)
fe4e0000 fe4f0e40   ati       (load from ati.SYS deferred)
fe500000 fe5057a0   Msfs      (load from Msfs.SYS deferred)
fe510000 fe519560   Npfs      (load from Npfs.SYS deferred)

fe520000 fe521f60   ndistapi  (load from ndistapi.sys deferred)
fe530000 fe54ed20   Fastfat   (load from Fastfat.SYS deferred)
fe5603e0 fe575360   NDIS      (NDIS.SYS, \\ntstress\symbols\SYS\NDIS.DBG)
fe580000 fe585920   elnkii    (elnkii.sys, \\ntstress\symbols\sys\elnkii.DBG)
fe590000 fe59b8a0   ndiswan   (load from ndiswan.sys deferred)
fe5a0000 fe5b7c40   nbf       (load from nbf.sys deferred)
fe5c0000 fe5c1b40   TDI       (load from TDI.SYS deferred)
fe5d0000 fe5dd580   nwlnkipx  (load from nwlnkipx.sys deferred)

fe5e0000 fe5ee220   nwlnknb   (load from nwlnknb.sys deferred)
fe5f0000 fe5fb320   afd       (load from afd.sys deferred)
fe610000 fe62bf00   tcpip     (load from tcpip.sys deferred)
fe630000 fe648600   netbt     (load from netbt.sys deferred)
fe650000 fe6572a0   netbios   (load from netbios.sys deferred)
fe660000 fe660000   Parport   (load from Parport.SYS deferred)
fe670000 fe670000   Parallel  (load from Parallel.SYS deferred)
fe680000 fe6bcf20   rdr       (rdr.sys, \\ntstress\symbols\sys\rdr.DBG)

fe6c0000 fe6f0920   srv       (load from srv.sys deferred) 

A saída é de uma versão mais antiga do Windows, e os nomes dos módulos serão diferentes nas versões atuais.

A segunda etapa é despejar o ponteiro de pilha para procurar endereços nos módulos fornecidos pelo comando x *! :

kd> dd esp 
fe4cc97c  80136039 00000270 00000000 00000000
fe4cc98c  fe682ae4 801036fe 00000000 fe68f57a
fe4cc99c  fe682a78 ffb5b030 00000000 00000000
fe4cc9ac  ff680e08 801036fe 00000000 00000000
fe4cc9bc  fe6a1198 00000001 fe4cca78 ffae9d98

fe4cc9cc  02000901 fe4cca68 ffb50030 ff680e08
fe4cc9dc  ffa449a8 8011c901 fe4cca78 00000000
fe4cc9ec  80127797 80110008 00000246 fe6a1430

kd> dd 
fe4cc9fc  00000270 fe6a10ae 00000270 ffa44abc
fe4cca0c  ffa449a8 ff680e08 fe6b2c04 ff680e08
fe4cca1c  ffa449a8 e12820c8 e1235308 ffa449a8
fe4cca2c  fe685968 ff680e08 e1235308 ffa449a8
fe4cca3c  ffb0ad48 ffb0ad38 00100000 ffb0ad38
fe4cca4c  00000000 ffa44a84 e1235308 0000000a
fe4cca5c  c00000d6 00000000 004ccb28 fe4ccbc4

fe4cca6c  fe680ba4 fe682050 00000000 fe4ccbd4 

Para determinar quais valores são endereços de função prováveis e quais são parâmetros ou registros salvos, a primeira coisa a considerar é como são os diferentes tipos de informações na pilha. A maioria dos inteiros terá um valor menor, o que significa que eles serão na maioria zeros quando exibidos como DWORDs (como 0x00000270). A maioria dos ponteiros para endereços locais estará perto do ponteiro de pilha (como fe4cca78). Os códigos de status geralmente começam com um c (c000000d6). Cadeias de caracteres Unicode e ASCII podem ser identificadas pelo fato de que cada caractere estará no intervalo de 20 a 7f. (Em KD, o comando dc (Memória de Exibição) mostrará os caracteres à direita.) O mais importante é que os endereços de função estarão no intervalo listado por x *!.

Observe que todos os módulos listados estão nos intervalos de 77f70000 a 8040c000 e fe4c0000 a fe6f0920. Com base nesses intervalos, os possíveis endereços de função na lista anterior são: 80136039, 801036fe (listado duas vezes, então, mais provavelmente um parâmetro), fe682ae4, fe68f57a, fe682a78, fe6a1198, 8011c901, 80127797, 80110008, fe6a1430, fe6a10ae, fe6b2c04, fe685968, fe680ba4 e fe682050. Investigue esses locais usando um comando ln (Listar Símbolos Mais Próximos) para cada endereço:

kd> ln 80136039 
(80136039)   NT!_KiServiceExit+0x1e  |  (80136039)   NT!_KiServiceExit2-0x177
kd> ln fe682ae4 
(fe682ae4)   rdr!_RdrSectionInfo+0x2c | (fe682ae4)   rdr!_RdrFcbReferenceLock-0xb4
kd> ln 801036fe 
(801036fe)   NT!_KeWaitForSingleObject | (801036fe)   NT!_MmProbeAndLockPages-0x2f8
kd> ln fe68f57a 
(fe68f57a)   rdr!_RdrDereferenceDiscardableCode+0xb4  
                         (fe68f57a)   rdr!_RdrUninitializeDiscardableCode-0xa
kd> ln fe682a78 
(fe682a78)   rdr!_RdrDiscardableCodeLock | (fe682a78) rdr!_RdrDiscardableCodeTimeout-0x38

kd> ln fe6a1198 
(fe6a1198)   rdr!_SubmitTdiRequest+0xae | (fe6a1198)   rdr!_RdrTdiAssociateAddress-0xc
kd> ln 8011c901 
(8011c901)   NT!_KeSuspendThread+0x13 | (8011c901)   NT!_FsRtlCheckLockForReadAccess-0x55
kd> ln 80127797 
(80127797)   NT!_ZwCloseObjectAuditAlarm+0x7 | (80127797)   NT!_ZwCompleteConnectPort-0x9
kd> ln 80110008 
(80110008)   NT!_KeWaitForMultipleObjects+0x27c | (80110008) NT!_FsRtlLookupMcbEntry-0x164
kd> ln fe6a1430 
(fe6a1430)   rdr!_RdrTdiCloseConnection+0xa | (fe6a1430)   rdr!_RdrDoTdiConnect-0x4

kd> ln fe6a10ae 
(fe6a10ae)   rdr!_RdrTdiDisconnect+0x56 | (fe6a10ae)   rdr!_SubmitTdiRequest-0x3c
kd> ln fe6b2c04 
(fe6b2c04)   rdr!_CleanupTransportConnection+0x64 | (fe6b2c04)rdr!_RdrReferenceServer-0x20
kd> ln fe685968 
(fe685968)   rdr!_RdrReconnectConnection+0x1b6
                        (fe685968)   rdr!_RdrInvalidateServerConnections-0x32
kd> ln fe682050 
(fe682050)   rdr!__strnicmp+0xaa  |  (fe682050)   rdr!_BackPackSpinLock-0xa10 

Conforme observado anteriormente, 801036fe provavelmente não fará parte do rastreamento de pilha, pois ele é listado duas vezes. Se os endereços retornados tiverem um deslocamento de zero, eles poderão ser ignorados (você não pode retornar ao início de uma função). Com base nessas informações, o rastreamento de pilha é revelado como:

NT!_KiServiceExit+0x1e
rdr!_RdrSectionInfo+0x2c
rdr!_RdrDereferenceDiscardableCode+0xb4  
rdr!_SubmitTdiRequest+0xae
NT!_KeSuspendThread+0x13
NT!_ZwCloseObjectAuditAlarm+0x7
NT!_KeWaitForMultipleObjects+0x27c
rdr!_RdrTdiCloseConnection+0xa
rdr!_RdrTdiDisconnect+0x56
rdr!_CleanupTransportConnection+0x64
rdr!_RdrReconnectConnection+0x1b6
rdr!__strnicmp+0xaa 

Para verificar cada símbolo, desmonte imediatamente antes do endereço de retorno especificado para ver se ele faz uma chamada para a função acima dele. Para reduzir o comprimento, o seguinte é editado (os deslocamentos usados foram encontrados por tentativa e erro):

kd> u 80136039-2 l1      //  looks ok, its a call
NT!_KiServiceExit+0x1c:
80136037 ffd3             call    ebx
kd> u fe682ae4-2 l1      //  paged out (all zeroes) unknown
rdr!_RdrSectionInfo+0x2a:
fe682ae2 0000             add     [eax],al
kd> u fe68f57a-6 l1      //  looks ok, its a call, but not anything above
rdr!_RdrDereferenceDiscardableCode+0xae:
fe68f574 ff15203568fe     call dword ptr [rdr!__imp__ExReleaseResourceForThreadLite]
kd> u fe682a78-6 l1      //  paged out (all zeroes) unknown

rdr!_DiscCodeInitialized+0x2:
fe682a72 0000             add     [eax],al
kd> u  fe6a1198-5 l1      //  looks good, call to something above
rdr!_SubmitTdiRequest+0xa9:
fe6a1193 e82ee3feff       call  rdr!_RdrDereferenceDiscardableCode (fe68f4c6)
kd> u 8011c901-2 l1      //  not good, its a jump in the function
NT!_KeSuspendThread+0x11:
8011c8ff 7424             jz      NT!_KeSuspendThread+0x37 (8011c925)
kd> u 80127797-2 l1      //  looks good, an int 2e -> KiServiceExit

NT!_ZwCloseObjectAuditAlarm+0x5:
80127795 cd2e             int     2e
kd> u 80110008-2 l1      //  not good, its a test instruction not a call
NT!_KeWaitForMultipleObjects+0x27a:
80110006 85c9             test    ecx,ecx
kd> u 80110008-5 l1      //  paged out (all zeroes) unknown
NT!_KeWaitForMultipleObjects+0x277:
80110003 0000             add     [eax],al
kd> u fe6a1430-6 l1      //  looks good its a call to ZwClose...
rdr!_RdrTdiCloseConnection+0x4:
fe6a142a ff15f83468fe     call    dword ptr [rdr!__imp__ZwClose (fe6834f8)]

kd> u fe6a10ae-2 l1      //  paged out (all zeroes) unknown
rdr!_RdrTdiDisconnect+0x54:
fe6a10ac 0000             add     [eax],al
kd> u  fe6b2c04-5 l1      //  looks good, call to something above
rdr!_CleanupTransportConnection+0x5f:
fe6b2bff e854e4feff       call    rdr!_RdrTdiDisconnect (fe6a1058)
kd> u fe685968-5 l1      //  looks good, call to immediately above
rdr!_RdrReconnectConnection+0x1b1:
fe685963 e838d20200       call    rdr!_CleanupTransportConnection (fe6b2ba0)

kd> u fe682050-2 l1      //  paged out (all zeroes) unknown
rdr!__strnicmp+0xa8:
fe68204e 0000             add     [eax],al 

Com base nisso, parece que RdrReconnectConnection chamou CleanupTransportConnection, para RdrTdiDisconnect, para ZwCloseObjectAuditAlarm, para KiServiceExit. As outras funções na pilha provavelmente são partes restantes de pilhas ativas anteriormente.

Nesse caso, o rastreamento de pilha funcionou corretamente. A seguir está o rastreamento de pilha real para marcar a resposta:

kd> k 
ChildEBP RetAddr
fe4cc978 80136039 NT!_NtClose+0xd
fe4cc978 80127797 NT!_KiServiceExit+0x1e

fe4cc9f4 fe6a1430 NT!_ZwCloseObjectAuditAlarm+0x7
fe4cca10 fe6b2c04 rdr!_RdrTdiCloseConnection+0xa
fe4cca28 fe685968 rdr!_CleanupTransportConnection+0x64
fe4cca78 fe688157 rdr!_RdrReconnectConnection+0x1b6
fe4ccbd4 80106b1e rdr!_RdrFsdCreate+0x45b
fe4ccbe8 8014b289 NT!IofCallDriver+0x38
fe4ccc98 8014decd NT!_IopParseDevice+0x693
fe4ccd08 8014d6d2 NT!_ObpLookupObjectName+0x487
fe4ccde4 8014d3ad NT!_ObOpenObjectByName+0xa2
fe4cce90 8016660d NT!_IoCreateFile+0x433
fe4cced0 80136039 NT!_NtCreateFile+0x2d 

A primeira entrada foi o local atual com base no rastreamento de pilha, mas caso contrário, a pilha estava correta até o ponto em que RdrReconnectConnection foi chamado. O mesmo processo poderia ter sido usado para rastrear toda a pilha. Para obter um método mais exato de andar de pilha manual, você precisaria desmontar cada função potencial e seguir cada push e pop para identificar cada DWORD na pilha.