Caminhando manualmente em uma pilha
Em alguns casos, a função de rastreamento de pilha falhará no depurador. Isso pode ser causado por uma chamada para um endereço inválido que fez com que o depurador perdesse o local do endereço de retorno; ou você pode ter se deparado com um ponteiro de pilha para o qual não é possível obter diretamente um rastreamento de pilha; ou pode haver algum outro problema de depurador. De qualquer forma, ser capaz de andar manualmente em uma pilha geralmente é valioso.
O conceito básico é bastante simples: descarte o ponteiro de pilha, descubra onde os módulos são carregados, encontre possíveis endereços de função e verifique se cada entrada de pilha possível faz uma chamada para a próxima.
Antes de passar por um exemplo, é importante observar que o comando kb (Display Stack Backtrace) tem um recurso adicional em sistemas Intel. Ao fazer um kb=[ebp] [eip] [esp], o depurador exibirá o rastreamento de pilha do quadro com os valores fornecidos para ponteiro base, ponteiro de instrução e ponteiro de pilha, respectivamente.
Para o exemplo, uma falha que realmente fornece um rastreamento de pilha é usada para que os resultados possam ser verificados no final.
A primeira etapa é descobrir quais módulos são carregados onde. Isso é feito com o comando x (Examinar Símbolos) (alguns símbolos são editados por motivos de comprimento):
kd> x *!
start end module name
77f70000 77fb8000 ntdll (C:\debug\ntdll.dll, \\ntstress\symbols\dll\ntdll.DBG)
80010000 80012320 Aha154x (load from Aha154x.sys deferred)
80013000 8001aa60 SCSIPORT (load from SCSIPORT.SYS deferred)
8001b000 8001fba0 Scsidisk (load from Scsidisk.sys deferred)
80100000 801b7b40 NT (ntoskrnl.exe, \\ntstress\symbols\exe\ntoskrnl.DBG)
802f0000 8033c000 Ntfs (load from Ntfs.sys deferred)
80400000 8040c000 hal (load from hal.dll deferred)
fe4c0000 fe4c38c0 vga (load from vga.sys deferred)
fe4d0000 fe4d3e60 VIDEOPRT (load from VIDEOPRT.SYS deferred)
fe4e0000 fe4f0e40 ati (load from ati.SYS deferred)
fe500000 fe5057a0 Msfs (load from Msfs.SYS deferred)
fe510000 fe519560 Npfs (load from Npfs.SYS deferred)
fe520000 fe521f60 ndistapi (load from ndistapi.sys deferred)
fe530000 fe54ed20 Fastfat (load from Fastfat.SYS deferred)
fe5603e0 fe575360 NDIS (NDIS.SYS, \\ntstress\symbols\SYS\NDIS.DBG)
fe580000 fe585920 elnkii (elnkii.sys, \\ntstress\symbols\sys\elnkii.DBG)
fe590000 fe59b8a0 ndiswan (load from ndiswan.sys deferred)
fe5a0000 fe5b7c40 nbf (load from nbf.sys deferred)
fe5c0000 fe5c1b40 TDI (load from TDI.SYS deferred)
fe5d0000 fe5dd580 nwlnkipx (load from nwlnkipx.sys deferred)
fe5e0000 fe5ee220 nwlnknb (load from nwlnknb.sys deferred)
fe5f0000 fe5fb320 afd (load from afd.sys deferred)
fe610000 fe62bf00 tcpip (load from tcpip.sys deferred)
fe630000 fe648600 netbt (load from netbt.sys deferred)
fe650000 fe6572a0 netbios (load from netbios.sys deferred)
fe660000 fe660000 Parport (load from Parport.SYS deferred)
fe670000 fe670000 Parallel (load from Parallel.SYS deferred)
fe680000 fe6bcf20 rdr (rdr.sys, \\ntstress\symbols\sys\rdr.DBG)
fe6c0000 fe6f0920 srv (load from srv.sys deferred)
A saída é de uma versão mais antiga do Windows, e os nomes dos módulos serão diferentes nas versões atuais.
A segunda etapa é despejar o ponteiro de pilha para procurar endereços nos módulos fornecidos pelo comando x *! :
kd> dd esp
fe4cc97c 80136039 00000270 00000000 00000000
fe4cc98c fe682ae4 801036fe 00000000 fe68f57a
fe4cc99c fe682a78 ffb5b030 00000000 00000000
fe4cc9ac ff680e08 801036fe 00000000 00000000
fe4cc9bc fe6a1198 00000001 fe4cca78 ffae9d98
fe4cc9cc 02000901 fe4cca68 ffb50030 ff680e08
fe4cc9dc ffa449a8 8011c901 fe4cca78 00000000
fe4cc9ec 80127797 80110008 00000246 fe6a1430
kd> dd
fe4cc9fc 00000270 fe6a10ae 00000270 ffa44abc
fe4cca0c ffa449a8 ff680e08 fe6b2c04 ff680e08
fe4cca1c ffa449a8 e12820c8 e1235308 ffa449a8
fe4cca2c fe685968 ff680e08 e1235308 ffa449a8
fe4cca3c ffb0ad48 ffb0ad38 00100000 ffb0ad38
fe4cca4c 00000000 ffa44a84 e1235308 0000000a
fe4cca5c c00000d6 00000000 004ccb28 fe4ccbc4
fe4cca6c fe680ba4 fe682050 00000000 fe4ccbd4
Para determinar quais valores são endereços de função prováveis e quais são parâmetros ou registros salvos, a primeira coisa a considerar é como são os diferentes tipos de informações na pilha. A maioria dos inteiros terá um valor menor, o que significa que eles serão na maioria zeros quando exibidos como DWORDs (como 0x00000270). A maioria dos ponteiros para endereços locais estará perto do ponteiro de pilha (como fe4cca78). Os códigos de status geralmente começam com um c (c000000d6). Cadeias de caracteres Unicode e ASCII podem ser identificadas pelo fato de que cada caractere estará no intervalo de 20 a 7f. (Em KD, o comando dc (Memória de Exibição) mostrará os caracteres à direita.) O mais importante é que os endereços de função estarão no intervalo listado por x *!.
Observe que todos os módulos listados estão nos intervalos de 77f70000 a 8040c000 e fe4c0000 a fe6f0920. Com base nesses intervalos, os possíveis endereços de função na lista anterior são: 80136039, 801036fe (listado duas vezes, então, mais provavelmente um parâmetro), fe682ae4, fe68f57a, fe682a78, fe6a1198, 8011c901, 80127797, 80110008, fe6a1430, fe6a10ae, fe6b2c04, fe685968, fe680ba4 e fe682050. Investigue esses locais usando um comando ln (Listar Símbolos Mais Próximos) para cada endereço:
kd> ln 80136039
(80136039) NT!_KiServiceExit+0x1e | (80136039) NT!_KiServiceExit2-0x177
kd> ln fe682ae4
(fe682ae4) rdr!_RdrSectionInfo+0x2c | (fe682ae4) rdr!_RdrFcbReferenceLock-0xb4
kd> ln 801036fe
(801036fe) NT!_KeWaitForSingleObject | (801036fe) NT!_MmProbeAndLockPages-0x2f8
kd> ln fe68f57a
(fe68f57a) rdr!_RdrDereferenceDiscardableCode+0xb4
(fe68f57a) rdr!_RdrUninitializeDiscardableCode-0xa
kd> ln fe682a78
(fe682a78) rdr!_RdrDiscardableCodeLock | (fe682a78) rdr!_RdrDiscardableCodeTimeout-0x38
kd> ln fe6a1198
(fe6a1198) rdr!_SubmitTdiRequest+0xae | (fe6a1198) rdr!_RdrTdiAssociateAddress-0xc
kd> ln 8011c901
(8011c901) NT!_KeSuspendThread+0x13 | (8011c901) NT!_FsRtlCheckLockForReadAccess-0x55
kd> ln 80127797
(80127797) NT!_ZwCloseObjectAuditAlarm+0x7 | (80127797) NT!_ZwCompleteConnectPort-0x9
kd> ln 80110008
(80110008) NT!_KeWaitForMultipleObjects+0x27c | (80110008) NT!_FsRtlLookupMcbEntry-0x164
kd> ln fe6a1430
(fe6a1430) rdr!_RdrTdiCloseConnection+0xa | (fe6a1430) rdr!_RdrDoTdiConnect-0x4
kd> ln fe6a10ae
(fe6a10ae) rdr!_RdrTdiDisconnect+0x56 | (fe6a10ae) rdr!_SubmitTdiRequest-0x3c
kd> ln fe6b2c04
(fe6b2c04) rdr!_CleanupTransportConnection+0x64 | (fe6b2c04)rdr!_RdrReferenceServer-0x20
kd> ln fe685968
(fe685968) rdr!_RdrReconnectConnection+0x1b6
(fe685968) rdr!_RdrInvalidateServerConnections-0x32
kd> ln fe682050
(fe682050) rdr!__strnicmp+0xaa | (fe682050) rdr!_BackPackSpinLock-0xa10
Conforme observado anteriormente, 801036fe provavelmente não fará parte do rastreamento de pilha, pois ele é listado duas vezes. Se os endereços retornados tiverem um deslocamento de zero, eles poderão ser ignorados (você não pode retornar ao início de uma função). Com base nessas informações, o rastreamento de pilha é revelado como:
NT!_KiServiceExit+0x1e
rdr!_RdrSectionInfo+0x2c
rdr!_RdrDereferenceDiscardableCode+0xb4
rdr!_SubmitTdiRequest+0xae
NT!_KeSuspendThread+0x13
NT!_ZwCloseObjectAuditAlarm+0x7
NT!_KeWaitForMultipleObjects+0x27c
rdr!_RdrTdiCloseConnection+0xa
rdr!_RdrTdiDisconnect+0x56
rdr!_CleanupTransportConnection+0x64
rdr!_RdrReconnectConnection+0x1b6
rdr!__strnicmp+0xaa
Para verificar cada símbolo, desmonte imediatamente antes do endereço de retorno especificado para ver se ele faz uma chamada para a função acima dele. Para reduzir o comprimento, o seguinte é editado (os deslocamentos usados foram encontrados por tentativa e erro):
kd> u 80136039-2 l1 // looks ok, its a call
NT!_KiServiceExit+0x1c:
80136037 ffd3 call ebx
kd> u fe682ae4-2 l1 // paged out (all zeroes) unknown
rdr!_RdrSectionInfo+0x2a:
fe682ae2 0000 add [eax],al
kd> u fe68f57a-6 l1 // looks ok, its a call, but not anything above
rdr!_RdrDereferenceDiscardableCode+0xae:
fe68f574 ff15203568fe call dword ptr [rdr!__imp__ExReleaseResourceForThreadLite]
kd> u fe682a78-6 l1 // paged out (all zeroes) unknown
rdr!_DiscCodeInitialized+0x2:
fe682a72 0000 add [eax],al
kd> u fe6a1198-5 l1 // looks good, call to something above
rdr!_SubmitTdiRequest+0xa9:
fe6a1193 e82ee3feff call rdr!_RdrDereferenceDiscardableCode (fe68f4c6)
kd> u 8011c901-2 l1 // not good, its a jump in the function
NT!_KeSuspendThread+0x11:
8011c8ff 7424 jz NT!_KeSuspendThread+0x37 (8011c925)
kd> u 80127797-2 l1 // looks good, an int 2e -> KiServiceExit
NT!_ZwCloseObjectAuditAlarm+0x5:
80127795 cd2e int 2e
kd> u 80110008-2 l1 // not good, its a test instruction not a call
NT!_KeWaitForMultipleObjects+0x27a:
80110006 85c9 test ecx,ecx
kd> u 80110008-5 l1 // paged out (all zeroes) unknown
NT!_KeWaitForMultipleObjects+0x277:
80110003 0000 add [eax],al
kd> u fe6a1430-6 l1 // looks good its a call to ZwClose...
rdr!_RdrTdiCloseConnection+0x4:
fe6a142a ff15f83468fe call dword ptr [rdr!__imp__ZwClose (fe6834f8)]
kd> u fe6a10ae-2 l1 // paged out (all zeroes) unknown
rdr!_RdrTdiDisconnect+0x54:
fe6a10ac 0000 add [eax],al
kd> u fe6b2c04-5 l1 // looks good, call to something above
rdr!_CleanupTransportConnection+0x5f:
fe6b2bff e854e4feff call rdr!_RdrTdiDisconnect (fe6a1058)
kd> u fe685968-5 l1 // looks good, call to immediately above
rdr!_RdrReconnectConnection+0x1b1:
fe685963 e838d20200 call rdr!_CleanupTransportConnection (fe6b2ba0)
kd> u fe682050-2 l1 // paged out (all zeroes) unknown
rdr!__strnicmp+0xa8:
fe68204e 0000 add [eax],al
Com base nisso, parece que RdrReconnectConnection chamou CleanupTransportConnection, para RdrTdiDisconnect, para ZwCloseObjectAuditAlarm, para KiServiceExit. As outras funções na pilha provavelmente são partes restantes de pilhas ativas anteriormente.
Nesse caso, o rastreamento de pilha funcionou corretamente. A seguir está o rastreamento de pilha real para marcar a resposta:
kd> k
ChildEBP RetAddr
fe4cc978 80136039 NT!_NtClose+0xd
fe4cc978 80127797 NT!_KiServiceExit+0x1e
fe4cc9f4 fe6a1430 NT!_ZwCloseObjectAuditAlarm+0x7
fe4cca10 fe6b2c04 rdr!_RdrTdiCloseConnection+0xa
fe4cca28 fe685968 rdr!_CleanupTransportConnection+0x64
fe4cca78 fe688157 rdr!_RdrReconnectConnection+0x1b6
fe4ccbd4 80106b1e rdr!_RdrFsdCreate+0x45b
fe4ccbe8 8014b289 NT!IofCallDriver+0x38
fe4ccc98 8014decd NT!_IopParseDevice+0x693
fe4ccd08 8014d6d2 NT!_ObpLookupObjectName+0x487
fe4ccde4 8014d3ad NT!_ObOpenObjectByName+0xa2
fe4cce90 8016660d NT!_IoCreateFile+0x433
fe4cced0 80136039 NT!_NtCreateFile+0x2d
A primeira entrada foi o local atual com base no rastreamento de pilha, mas caso contrário, a pilha estava correta até o ponto em que RdrReconnectConnection foi chamado. O mesmo processo poderia ter sido usado para rastrear toda a pilha. Para obter um método mais exato de andar de pilha manual, você precisaria desmontar cada função potencial e seguir cada push e pop para identificar cada DWORD na pilha.