BigInteger.Remainder(BigInteger, BigInteger) Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Performs integer division on two BigInteger values and returns the remainder.
public:
static System::Numerics::BigInteger Remainder(System::Numerics::BigInteger dividend, System::Numerics::BigInteger divisor);
public static System.Numerics.BigInteger Remainder (System.Numerics.BigInteger dividend, System.Numerics.BigInteger divisor);
static member Remainder : System.Numerics.BigInteger * System.Numerics.BigInteger -> System.Numerics.BigInteger
Public Shared Function Remainder (dividend As BigInteger, divisor As BigInteger) As BigInteger
Parameters
- dividend
- BigInteger
The value to be divided.
- divisor
- BigInteger
The value to divide by.
Returns
The remainder after dividing dividend
by divisor
.
Exceptions
divisor
is 0 (zero).
Examples
The following example compares the remainder from the DivRem method with the remainder returned by the Remainder method to establish that the two methods calculate identical remainders.
using System;
using System.Numerics;
public class Example
{
public static void Main()
{
BigInteger dividend1 = BigInteger.Pow(Int64.MaxValue, 3);
BigInteger dividend2 = dividend1 * BigInteger.MinusOne;
BigInteger divisor1 = Int32.MaxValue;
BigInteger divisor2 = divisor1 * BigInteger.MinusOne;
BigInteger remainder1, remainder2;
BigInteger divRem1 = BigInteger.Zero;
BigInteger divRem2 = BigInteger.Zero;
remainder1 = BigInteger.Remainder(dividend1, divisor1);
remainder2 = BigInteger.Remainder(dividend2, divisor1);
BigInteger.DivRem(dividend1, divisor1, out divRem1);
Console.WriteLine("BigInteger.Remainder({0}, {1}) = {2}",
dividend1, divisor1, remainder1);
Console.WriteLine("BigInteger.DivRem({0}, {1}) = {2}",
dividend1, divisor1, divRem1);
if (remainder1.Equals(divRem1))
Console.WriteLine("The remainders are equal.\n");
BigInteger.DivRem(dividend2, divisor2, out divRem2);
Console.WriteLine("BigInteger.Remainder({0}, {1}) = {2}",
dividend2, divisor2, remainder2);
Console.WriteLine("BigInteger.DivRem({0}, {1}) = {2}",
dividend2, divisor2, divRem2);
if (remainder2.Equals(divRem2))
Console.WriteLine("The remainders are equal.\n");
}
}
// The example displays the following output:
// BigInteger.Remainder(784637716923335095224261902710254454442933591094742482943, 2147483647) = 1
// BigInteger.DivRem(784637716923335095224261902710254454442933591094742482943, 2147483647) = 1
// The remainders are equal.
//
// BigInteger.Remainder(-784637716923335095224261902710254454442933591094742482943, -2147483647) = -1
// BigInteger.DivRem(-784637716923335095224261902710254454442933591094742482943, -2147483647) = -1
// The remainders are equal.
open System
open System.Numerics
let dividend1 = BigInteger.Pow(Int64.MaxValue, 3)
let dividend2 = dividend1 * BigInteger.MinusOne
let divisor1 = bigint Int32.MaxValue
let divisor2 = divisor1 * BigInteger.MinusOne
let remainder1 = BigInteger.Remainder(dividend1, divisor1)
let remainder2 = BigInteger.Remainder(dividend2, divisor1)
let mutable divRem1 = BigInteger.Zero
let mutable divRem2 = BigInteger.Zero
BigInteger.DivRem(dividend1, divisor1, &divRem1) |> ignore
printfn $"BigInteger.Remainder({dividend1}, {divisor1}) = {remainder1}"
printfn $"BigInteger.DivRem({dividend1}, {divisor1}) = {divRem1}"
if remainder1.Equals divRem1 then
printfn $"The remainders are equal.\n"
BigInteger.DivRem(dividend2, divisor2, &divRem2) |> ignore
printfn $"BigInteger.Remainder({dividend2}, {divisor2}) = {remainder2}"
printfn $"BigInteger.DivRem({dividend2}, {divisor2}) = {divRem2}"
if remainder2.Equals divRem2 then
printfn $"The remainders are equal.\n"
// The example displays the following output:
// BigInteger.Remainder(784637716923335095224261902710254454442933591094742482943, 2147483647) = 1
// BigInteger.DivRem(784637716923335095224261902710254454442933591094742482943, 2147483647) = 1
// The remainders are equal.
//
// BigInteger.Remainder(-784637716923335095224261902710254454442933591094742482943, -2147483647) = -1
// BigInteger.DivRem(-784637716923335095224261902710254454442933591094742482943, -2147483647) = -1
// The remainders are equal.
Imports System.Numerics
Module Example
Public Sub Main()
Dim dividend1 As BigInteger = BigInteger.Pow(Int64.MaxValue, 3)
Dim dividend2 As BigInteger = dividend1 * BigInteger.MinusOne
Dim divisor1 As BigInteger = Int32.MaxValue
Dim divisor2 As BigInteger = divisor1 * BigInteger.MinusOne
Dim remainder1, remainder2 As BigInteger
Dim divRem1 As BigInteger = BigInteger.Zero
Dim divRem2 As BigInteger = BigInteger.Zero
remainder1 = BigInteger.Remainder(dividend1, divisor1)
remainder2 = BigInteger.Remainder(dividend2, divisor1)
BigInteger.DivRem(dividend1, divisor1, divRem1)
Console.WriteLine("BigInteger.Remainder({0}, {1}) = {2}",
dividend1, divisor1, remainder1)
Console.WriteLine("BigInteger.DivRem({0}, {1}) = {2}",
dividend1, divisor1, divRem1)
If remainder1.Equals(divRem1) Then Console.WriteLine("The remainders are equal.")
Console.WriteLine()
BigInteger.DivRem(dividend2, divisor2, divRem2)
Console.WriteLine("BigInteger.Remainder({0}, {1}) = {2}",
dividend2, divisor2, remainder2)
Console.WriteLine("BigInteger.DivRem({0}, {1}) = {2}",
dividend2, divisor2, divRem2)
If remainder2.Equals(divRem2) Then Console.WriteLine("The remainders are equal.")
Console.WriteLine()
End Sub
End Module
' The example displays the following output:
' BigInteger.Remainder(784637716923335095224261902710254454442933591094742482943, 2147483647) = 1
' BigInteger.DivRem(784637716923335095224261902710254454442933591094742482943, 2147483647) = 1
' The remainders are equal.
'
' BigInteger.Remainder(-784637716923335095224261902710254454442933591094742482943, -2147483647) = -1
' BigInteger.DivRem(-784637716923335095224261902710254454442933591094742482943, -2147483647) = -1
' The remainders are equal.
Remarks
The sign of the remainder is the sign of the dividend
parameter.
The Remainder method is implemented for languages that do not support custom operators. Its behavior is identical to division using the modulus operator.
If necessary, the method automatically performs implicit conversion of other integral types to BigInteger objects before it performs the modulus operation.