StandardTrainersCatalog.LdSvm Метод
Определение
Важно!
Некоторые сведения относятся к предварительной версии продукта, в которую до выпуска могут быть внесены существенные изменения. Майкрософт не предоставляет никаких гарантий, явных или подразумеваемых, относительно приведенных здесь сведений.
Перегрузки
LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LdSvmTrainer+Options) |
Создание LdSvmTrainer с помощью дополнительных параметров, которые прогнозируют целевой объект с помощью локальной модели DEEP SVM. |
LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Boolean, Boolean) |
Создание LdSvmTrainer, которое прогнозирует целевой объект с помощью локальной модели DEEP SVM. |
LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, LdSvmTrainer+Options)
Создание LdSvmTrainer с помощью дополнительных параметров, которые прогнозируют целевой объект с помощью локальной модели DEEP SVM.
public static Microsoft.ML.Trainers.LdSvmTrainer LdSvm (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Microsoft.ML.Trainers.LdSvmTrainer.Options options);
static member LdSvm : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * Microsoft.ML.Trainers.LdSvmTrainer.Options -> Microsoft.ML.Trainers.LdSvmTrainer
<Extension()>
Public Function LdSvm (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, options As LdSvmTrainer.Options) As LdSvmTrainer
Параметры
- options
- LdSvmTrainer.Options
Параметры обучения.
Возвращаемое значение
Примеры
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class LdSvmWithOptions
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define trainer options.
var options = new LdSvmTrainer.Options
{
TreeDepth = 5,
NumberOfIterations = 10000,
Sigma = 0.1f,
};
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.LdSvm(options);
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: True
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.80
// AUC: 0.89
// F1 Score: 0.79
// Negative Precision: 0.81
// Negative Recall: 0.81
// Positive Precision: 0.79
// Positive Recall: 0.79
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 189 | 49 | 0.7941
// negative || 50 | 212 | 0.8092
// ||======================
// Precision || 0.7908 | 0.8123 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Применяется к
LdSvm(BinaryClassificationCatalog+BinaryClassificationTrainers, String, String, String, Int32, Int32, Boolean, Boolean)
Создание LdSvmTrainer, которое прогнозирует целевой объект с помощью локальной модели DEEP SVM.
public static Microsoft.ML.Trainers.LdSvmTrainer LdSvm (this Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers catalog, string labelColumnName = "Label", string featureColumnName = "Features", string exampleWeightColumnName = default, int numberOfIterations = 15000, int treeDepth = 3, bool useBias = true, bool useCachedData = true);
static member LdSvm : Microsoft.ML.BinaryClassificationCatalog.BinaryClassificationTrainers * string * string * string * int * int * bool * bool -> Microsoft.ML.Trainers.LdSvmTrainer
<Extension()>
Public Function LdSvm (catalog As BinaryClassificationCatalog.BinaryClassificationTrainers, Optional labelColumnName As String = "Label", Optional featureColumnName As String = "Features", Optional exampleWeightColumnName As String = Nothing, Optional numberOfIterations As Integer = 15000, Optional treeDepth As Integer = 3, Optional useBias As Boolean = true, Optional useCachedData As Boolean = true) As LdSvmTrainer
Параметры
- labelColumnName
- String
Имя столбца меток.
- featureColumnName
- String
Имя столбца компонента. Данные столбца должны быть вектором известного Singleразмера .
- exampleWeightColumnName
- String
Имя примера столбца веса (необязательно).
- numberOfIterations
- Int32
Число итераций.
- treeDepth
- Int32
Глубина локального глубокого дерева SVM.
- useBias
- Boolean
Указывает, должна ли модель иметь предвзятость.
- useCachedData
- Boolean
Указывает, следует ли выполнять итерацию по данным с помощью кэша.
Возвращаемое значение
Примеры
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.BinaryClassification
{
public static class LdSvm
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline = mlContext.BinaryClassification.Trainers
.LdSvm();
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Print 5 predictions.
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, "
+ $"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: True, Prediction: True
// Label: False, Prediction: True
// Label: True, Prediction: True
// Label: True, Prediction: True
// Label: False, Prediction: False
// Evaluate the overall metrics.
var metrics = mlContext.BinaryClassification
.EvaluateNonCalibrated(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Accuracy: 0.82
// AUC: 0.85
// F1 Score: 0.81
// Negative Precision: 0.82
// Negative Recall: 0.82
// Positive Precision: 0.81
// Positive Recall: 0.81
// TEST POSITIVE RATIO: 0.4760 (238.0/(238.0+262.0))
// Confusion table
// ||======================
// PREDICTED || positive | negative | Recall
// TRUTH ||======================
// positive || 192 | 46 | 0.8067
// negative || 46 | 216 | 0.8244
// ||======================
// Precision || 0.8067 | 0.8244 |
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5f;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 50)
.Select(x => x ? randomFloat() : randomFloat() +
0.1f).ToArray()
};
}
}
// Example with label and 50 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(50)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public bool Label { get; set; }
// Predicted label from the trainer.
public bool PredictedLabel { get; set; }
}
// Pretty-print BinaryClassificationMetrics objects.
private static void PrintMetrics(BinaryClassificationMetrics metrics)
{
Console.WriteLine($"Accuracy: {metrics.Accuracy:F2}");
Console.WriteLine($"AUC: {metrics.AreaUnderRocCurve:F2}");
Console.WriteLine($"F1 Score: {metrics.F1Score:F2}");
Console.WriteLine($"Negative Precision: " +
$"{metrics.NegativePrecision:F2}");
Console.WriteLine($"Negative Recall: {metrics.NegativeRecall:F2}");
Console.WriteLine($"Positive Precision: " +
$"{metrics.PositivePrecision:F2}");
Console.WriteLine($"Positive Recall: {metrics.PositiveRecall:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}