Поделиться через


TimeSeriesCatalog.DetectSpikeBySsa Метод

Определение

Перегрузки

DetectSpikeBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, AnomalySide, ErrorFunction)

СозданиеSsaSpikeEstimator, которое прогнозирует пики временных рядов с помощью анализа сингулярного спектра (SSA).

DetectSpikeBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, AnomalySide, ErrorFunction)
Устаревшие..

СозданиеSsaSpikeEstimator, которое прогнозирует пики временных рядов с помощью анализа сингулярного спектра (SSA).

DetectSpikeBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, AnomalySide, ErrorFunction)

СозданиеSsaSpikeEstimator, которое прогнозирует пики временных рядов с помощью анализа сингулярного спектра (SSA).

public static Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator DetectSpikeBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int pvalueHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference);
static member DetectSpikeBySsa : Microsoft.ML.TransformsCatalog * string * string * double * int * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide * Microsoft.ML.Transforms.TimeSeries.ErrorFunction -> Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator
<Extension()>
Public Function DetectSpikeBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, pvalueHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference) As SsaSpikeEstimator

Параметры

catalog
TransformsCatalog

Каталог преобразования.

outputColumnName
String

Имя столбца, полученного из преобразования inputColumnName. Данные столбца являются вектором Double. Вектор содержит три элемента: оповещение (ненулевое значение означает пик), необработанную оценку и p-значение.

inputColumnName
String

Имя преобразуемого столбца. Данные столбца должны быть Single. Если задано значение null, значение этого outputColumnName параметра будет использоваться в качестве источника.

confidence
Double

Достоверность обнаружения пиков в диапазоне [0, 100].

pvalueHistoryLength
Int32

Размер скользящего окна для вычисления p-значения.

trainingWindowSize
Int32

Количество точек с начала последовательности, используемой для обучения.

seasonalityWindowSize
Int32

Верхняя граница по наибольшей релевантной сезонности во входных временных рядах.

side
AnomalySide

Аргумент, определяющий, следует ли обнаруживать положительные или отрицательные аномалии или оба.

errorFunction
ErrorFunction

Функция, используемая для вычисления ошибки между ожидаемым и наблюдаемным значением.

Возвращаемое значение

Примеры

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectSpikeBySsaBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify spiking points in the series. This estimator can account for
        // temporal seasonality in the data.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern and a spike
            // within the pattern
            const int SeasonalitySize = 5;
            const int TrainingSeasons = 3;
            const int TrainingSize = SeasonalitySize * TrainingSeasons;
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                //This is a spike.
                new TimeSeriesData(100),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup estimator arguments
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(SsaSpikePrediction.Prediction);

            // The transformed data.
            var transformedData = ml.Transforms.DetectSpikeBySsa(outputColumnName,
                inputColumnName, 95.0d, 8, TrainingSize, SeasonalitySize + 1).Fit(
                dataView).Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // SsaSpikePrediction.
            var predictionColumn = ml.Data.CreateEnumerable<SsaSpikePrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine($"{outputColumnName} column obtained " +
                $"post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value");
            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data    Alert   Score   P-Value
            // 0       0      -2.53    0.50
            // 1       0      -0.01    0.01
            // 2       0       0.76    0.14
            // 3       0       0.69    0.28
            // 4       0       1.44    0.18
            // 0       0      -1.84    0.17
            // 1       0       0.22    0.44
            // 2       0       0.20    0.45
            // 3       0       0.16    0.47
            // 4       0       1.33    0.18
            // 0       0      -1.79    0.07
            // 1       0       0.16    0.50
            // 2       0       0.09    0.50
            // 3       0       0.08    0.45
            // 4       0       1.31    0.12
            // 100     1      98.21    0.00   <-- alert is on, predicted spike
            // 0       0     -13.83    0.29
            // 1       0      -1.74    0.44
            // 2       0      -0.47    0.46
            // 3       0     -16.50    0.29
            // 4       0     -29.82    0.21
        }

        private static void PrintPrediction(float value, SsaSpikePrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2]);

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }

        class SsaSpikePrediction
        {
            [VectorType(3)]
            public double[] Prediction { get; set; }
        }
    }
}

Применяется к

DetectSpikeBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, AnomalySide, ErrorFunction)

Внимание!

This API method is deprecated, please use the overload with confidence parameter of type double.

СозданиеSsaSpikeEstimator, которое прогнозирует пики временных рядов с помощью анализа сингулярного спектра (SSA).

[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator DetectSpikeBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference);
public static Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator DetectSpikeBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int pvalueHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.AnomalySide side = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectSpikeBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide * Microsoft.ML.Transforms.TimeSeries.ErrorFunction -> Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator
static member DetectSpikeBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.AnomalySide * Microsoft.ML.Transforms.TimeSeries.ErrorFunction -> Microsoft.ML.Transforms.TimeSeries.SsaSpikeEstimator
<Extension()>
Public Function DetectSpikeBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, pvalueHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional side As AnomalySide = Microsoft.ML.Transforms.TimeSeries.AnomalySide.TwoSided, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference) As SsaSpikeEstimator

Параметры

catalog
TransformsCatalog

Каталог преобразования.

outputColumnName
String

Имя столбца, полученного из преобразования inputColumnName. Данные столбца являются вектором Double. Вектор содержит три элемента: оповещение (ненулевое значение означает пик), необработанную оценку и p-значение.

inputColumnName
String

Имя преобразуемого столбца. Данные столбца должны быть Single. Если задано значение null, значение этого outputColumnName параметра будет использоваться в качестве источника.

confidence
Int32

Достоверность обнаружения пиков в диапазоне [0, 100].

pvalueHistoryLength
Int32

Размер скользящего окна для вычисления p-значения.

trainingWindowSize
Int32

Количество точек с начала последовательности, используемой для обучения.

seasonalityWindowSize
Int32

Верхняя граница по наибольшей релевантной сезонности во входных временных рядах.

side
AnomalySide

Аргумент, определяющий, следует ли обнаруживать положительные или отрицательные аномалии или оба.

errorFunction
ErrorFunction

Функция, используемая для вычисления ошибки между ожидаемым и наблюдаемным значением.

Возвращаемое значение

Атрибуты

Примеры

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectSpikeBySsaBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify spiking points in the series. This estimator can account for
        // temporal seasonality in the data.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern and a spike
            // within the pattern
            const int SeasonalitySize = 5;
            const int TrainingSeasons = 3;
            const int TrainingSize = SeasonalitySize * TrainingSeasons;
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                //This is a spike.
                new TimeSeriesData(100),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup estimator arguments
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(SsaSpikePrediction.Prediction);

            // The transformed data.
            var transformedData = ml.Transforms.DetectSpikeBySsa(outputColumnName,
                inputColumnName, 95.0d, 8, TrainingSize, SeasonalitySize + 1).Fit(
                dataView).Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // SsaSpikePrediction.
            var predictionColumn = ml.Data.CreateEnumerable<SsaSpikePrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine($"{outputColumnName} column obtained " +
                $"post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value");
            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data    Alert   Score   P-Value
            // 0       0      -2.53    0.50
            // 1       0      -0.01    0.01
            // 2       0       0.76    0.14
            // 3       0       0.69    0.28
            // 4       0       1.44    0.18
            // 0       0      -1.84    0.17
            // 1       0       0.22    0.44
            // 2       0       0.20    0.45
            // 3       0       0.16    0.47
            // 4       0       1.33    0.18
            // 0       0      -1.79    0.07
            // 1       0       0.16    0.50
            // 2       0       0.09    0.50
            // 3       0       0.08    0.45
            // 4       0       1.31    0.12
            // 100     1      98.21    0.00   <-- alert is on, predicted spike
            // 0       0     -13.83    0.29
            // 1       0      -1.74    0.44
            // 2       0      -0.47    0.46
            // 3       0     -16.50    0.29
            // 4       0     -29.82    0.21
        }

        private static void PrintPrediction(float value, SsaSpikePrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2]);

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }

        class SsaSpikePrediction
        {
            [VectorType(3)]
            public double[] Prediction { get; set; }
        }
    }
}

Применяется к