Поделиться через


LightGbmRegressionTrainer Класс

Определение

Для IEstimator<TTransformer> обучения модели регрессии с увеличенным деревом принятия решений с помощью LightGBM.

public sealed class LightGbmRegressionTrainer : Microsoft.ML.Trainers.LightGbm.LightGbmTrainerBase<Microsoft.ML.Trainers.LightGbm.LightGbmRegressionTrainer.Options,float,Microsoft.ML.Data.RegressionPredictionTransformer<Microsoft.ML.Trainers.LightGbm.LightGbmRegressionModelParameters>,Microsoft.ML.Trainers.LightGbm.LightGbmRegressionModelParameters>
type LightGbmRegressionTrainer = class
    inherit LightGbmTrainerBase<LightGbmRegressionTrainer.Options, single, RegressionPredictionTransformer<LightGbmRegressionModelParameters>, LightGbmRegressionModelParameters>
Public NotInheritable Class LightGbmRegressionTrainer
Inherits LightGbmTrainerBase(Of LightGbmRegressionTrainer.Options, Single, RegressionPredictionTransformer(Of LightGbmRegressionModelParameters), LightGbmRegressionModelParameters)
Наследование

Комментарии

Чтобы создать этот обучатель, используйте LightGbm или LightGbm(Options).

Входные и выходные столбцы

Входные данные столбца меток должны иметь тип Single. Входные признаки данных столбцов должны быть вектором известного Singleразмера .

Этот алгоритм обучения выводит следующие столбцы:

Имя выходного столбца Тип столбца Описание
Score Single Несвязанная оценка, прогнозируемая моделью.

Характеристики тренера

Задача машинного обучения Регрессия
Требуется ли нормализация? нет
Требуется ли кэширование? нет
Требуется NuGet в дополнение к Microsoft.ML Microsoft.ML.LightGbm
Экспортируемый в ONNX Да

Сведения об алгоритме обучения

LightGBM — это открытый код реализация дерева принятия решений по градиенту. Дополнительные сведения о реализации см. в официальной документации LightGBM или в этой статье.

Ссылки на примеры использования см. в разделе "См. также".

Поля

FeatureColumn

Столбец признаков, который ожидает тренер.

(Унаследовано от TrainerEstimatorBase<TTransformer,TModel>)
GroupIdColumn

Необязательный столбец groupID, который ожидает тренеры ранжирования.

(Унаследовано от TrainerEstimatorBaseWithGroupId<TTransformer,TModel>)
LabelColumn

Столбец метки, который ожидает тренер. Может иметь значение null, указывающее, что метка не используется для обучения.

(Унаследовано от TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Столбец веса, который ожидает тренер. Может быть null, что указывает, что вес не используется для обучения.

(Унаследовано от TrainerEstimatorBase<TTransformer,TModel>)

Свойства

Info

Для IEstimator<TTransformer> обучения модели регрессии с увеличенным деревом принятия решений с помощью LightGBM.

(Унаследовано от LightGbmTrainerBase<TOptions,TOutput,TTransformer,TModel>)

Методы

Fit(IDataView, IDataView)

Обучает LightGbmRegressionTrainer использование обучающих и проверочных данных, возвращает значение RegressionPredictionTransformer<TModel>.

Fit(IDataView)

Тренирует и возвращает .ITransformer

(Унаследовано от TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Для IEstimator<TTransformer> обучения модели регрессии с увеличенным деревом принятия решений с помощью LightGBM.

(Унаследовано от TrainerEstimatorBase<TTransformer,TModel>)

Методы расширения

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Добавьте "контрольную точку кэширования" в цепочку оценщика. Это гарантирует, что подчиненные оценщики будут обучены на основе кэшированных данных. Рекомендуется использовать контрольную точку кэширования перед обучением, которые принимают несколько данных.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Учитывая оценщик, верните объект-оболочку, который будет вызывать делегат один раз Fit(IDataView) . Часто важно, чтобы оценщик возвращал сведения о том, что было положено, поэтому Fit(IDataView) метод возвращает специально типизированный объект, а не просто общий ITransformer. Однако в то же время часто IEstimator<TTransformer> формируются в конвейеры со многими объектами, поэтому нам может потребоваться создать цепочку оценщиков, где EstimatorChain<TLastTransformer> оценщик, для которого мы хотим получить преобразователь, похоронен где-то в этой цепочке. В этом сценарии мы можем подключить делегат, который будет вызываться после вызова соответствия.

Применяется к

См. также раздел