The ND-series virtual machines are a new addition to the GPU family designed for AI, and Deep Learning workloads. They offer excellent performance for training and inference. ND instances are powered by NVIDIA Tesla P40 GPUs and Intel Xeon E5-2690 v4 (Broadwell) CPUs. These instances provide excellent performance for single-precision floating point operations, for AI workloads utilizing Microsoft Cognitive Toolkit, TensorFlow, Caffe, and other frameworks. The ND-series also offers a much larger GPU memory size (24 GB), enabling to fit much larger neural net models. Like the NC-series, the ND-series offers a configuration with a secondary low-latency, high-throughput network through RDMA, and InfiniBand connectivity so you can run large-scale training jobs spanning many GPUs.
1Temp disk speed often differs between RR (Random Read) and RW (Random Write) operations. RR operations are typically faster than RW operations. The RW speed is usually slower than the RR speed on series where only the RR speed value is listed.
Storage capacity is shown in units of GiB or 1024^3 bytes. When you compare disks measured in GB (1000^3 bytes) to disks measured in GiB (1024^3) remember that capacity numbers given in GiB may appear smaller. For example, 1023 GiB = 1098.4 GB.
Disk throughput is measured in input/output operations per second (IOPS) and MBps where MBps = 10^6 bytes/sec.
Storage capacity is shown in units of GiB or 1024^3 bytes. When you compare disks measured in GB (1000^3 bytes) to disks measured in GiB (1024^3) remember that capacity numbers given in GiB may appear smaller. For example, 1023 GiB = 1098.4 GB.
Disk throughput is measured in input/output operations per second (IOPS) and MBps where MBps = 10^6 bytes/sec.
Data disks can operate in cached or uncached modes. For cached data disk operation, the host cache mode is set to ReadOnly or ReadWrite. For uncached data disk operation, the host cache mode is set to None.
Expected network bandwidth is the maximum aggregated bandwidth allocated per VM type across all NICs, for all destinations. For more information, see Virtual machine network bandwidth
Upper limits aren't guaranteed. Limits offer guidance for selecting the right VM type for the intended application. Actual network performance will depend on several factors including network congestion, application loads, and network settings. For information on optimizing network throughput, see Optimize network throughput for Azure virtual machines.
To achieve the expected network performance on Linux or Windows, you may need to select a specific version or optimize your VM. For more information, see Bandwidth/Throughput testing (NTTTCP).
Accelerator (GPUs, FPGAs, etc.) info for each size