NCv3-series VMs are powered by NVIDIA Tesla V100 GPUs. These GPUs can provide 1.5x the computational performance of the NCv2-series. Customers can take advantage of these updated GPUs for traditional HPC workloads such as reservoir modeling, DNA sequencing, protein analysis, Monte Carlo simulations, and others. The NC24rs v3 configuration provides a low latency, high-throughput network interface optimized for tightly coupled parallel computing workloads. In addition to the GPUs, the NCv3-series VMs are also powered by Intel Xeon E5-2690 v4 (Broadwell) CPUs.
Important
For this VM series, the vCPU (core) quota in your subscription is initially set to 0 in each region. Request a vCPU quota increase for this series in an available region. These SKUs aren't available to trial or Visual Studio Subscriber Azure subscriptions. Your subscription level might not support selecting or deploying these SKUs.
1Temp disk speed often differs between RR (Random Read) and RW (Random Write) operations. RR operations are typically faster than RW operations. The RW speed is usually slower than the RR speed on series where only the RR speed value is listed.
Storage capacity is shown in units of GiB or 1024^3 bytes. When you compare disks measured in GB (1000^3 bytes) to disks measured in GiB (1024^3) remember that capacity numbers given in GiB may appear smaller. For example, 1023 GiB = 1098.4 GB.
Disk throughput is measured in input/output operations per second (IOPS) and MBps where MBps = 10^6 bytes/sec.
Storage capacity is shown in units of GiB or 1024^3 bytes. When you compare disks measured in GB (1000^3 bytes) to disks measured in GiB (1024^3) remember that capacity numbers given in GiB may appear smaller. For example, 1023 GiB = 1098.4 GB.
Disk throughput is measured in input/output operations per second (IOPS) and MBps where MBps = 10^6 bytes/sec.
Data disks can operate in cached or uncached modes. For cached data disk operation, the host cache mode is set to ReadOnly or ReadWrite. For uncached data disk operation, the host cache mode is set to None.
Expected network bandwidth is the maximum aggregated bandwidth allocated per VM type across all NICs, for all destinations. For more information, see Virtual machine network bandwidth
Upper limits aren't guaranteed. Limits offer guidance for selecting the right VM type for the intended application. Actual network performance will depend on several factors including network congestion, application loads, and network settings. For information on optimizing network throughput, see Optimize network throughput for Azure virtual machines.
To achieve the expected network performance on Linux or Windows, you may need to select a specific version or optimize your VM. For more information, see Bandwidth/Throughput testing (NTTTCP).
Accelerator (GPUs, FPGAs, etc.) info for each size