Azure OpenAI-assistent efter indatabindning för Azure Functions

Viktigt!

Azure OpenAI-tillägget för Azure Functions är för närvarande i förhandsversion.

Med Azure OpenAI-assistenten efter indatabindningen kan du skicka frågor till chattrobotar för assistenter.

Information om konfiguration och konfigurationsinformation för Azure OpenAI-tillägget finns i Azure OpenAI-tillägg för Azure Functions. Mer information om Azure OpenAI-assistenter finns i API för Azure OpenAI Assistants.

Kommentar

Referenser och exempel tillhandahålls endast för modellen Node.js v4.

Kommentar

Referenser och exempel tillhandahålls endast för Python v2-modellen.

Kommentar

Båda C#-processmodellerna stöds, men endast exempel på isolerade arbetsmodeller tillhandahålls.

Exempel

Det här exemplet visar skapandeprocessen, där FUNKTIONEN HTTP POST som skickar användarfrågor till chattroboten assistent. Svaret på uppmaningen returneras i HTTP-svaret.

/// <summary>
/// HTTP POST function that sends user prompts to the assistant chat bot.
/// </summary>
[Function(nameof(PostUserQuery))]
public static IActionResult PostUserQuery(
    [HttpTrigger(AuthorizationLevel.Anonymous, "post", Route = "assistants/{assistantId}")] HttpRequestData req,
    string assistantId,
    [AssistantPostInput("{assistantId}", "{Query.message}", ChatModel = "%CHAT_MODEL_DEPLOYMENT_NAME%", ChatStorageConnectionSetting = DefaultChatStorageConnectionSetting, CollectionName = DefaultCollectionName)] AssistantState state)
{
    return new OkObjectResult(state.RecentMessages.Any() ? state.RecentMessages[state.RecentMessages.Count - 1].Content : "No response returned.");
}

Det här exemplet visar skapandeprocessen, där FUNKTIONEN HTTP POST som skickar användarfrågor till chattroboten assistent. Svaret på uppmaningen returneras i HTTP-svaret.

/*
 * HTTP POST function that sends user prompts to the assistant chat bot.
 */ 
@FunctionName("PostUserResponse")
public HttpResponseMessage postUserResponse(
    @HttpTrigger(
        name = "req",
        methods = {HttpMethod.POST}, 
        authLevel = AuthorizationLevel.ANONYMOUS,
        route = "assistants/{assistantId}") 
        HttpRequestMessage<Optional<String>> request,
    @BindingName("assistantId") String assistantId,        
    @AssistantPost(name="newMessages", id = "{assistantId}", chatModel = "%CHAT_MODEL_DEPLOYMENT_NAME%", userMessage = "{Query.message}", chatStorageConnectionSetting = DEFAULT_CHATSTORAGE, collectionName = DEFAULT_COLLECTION) AssistantState state,
    final ExecutionContext context) {
        
        List<AssistantMessage> recentMessages = state.getRecentMessages();
        String response = recentMessages.isEmpty() ? "No response returned." : recentMessages.get(recentMessages.size() - 1).getContent();
        
        return request.createResponseBuilder(HttpStatus.OK)
            .header("Content-Type", "application/json")
            .body(response)
            .build();
}

Det här exemplet visar skapandeprocessen, där FUNKTIONEN HTTP POST som skickar användarfrågor till chattroboten assistent. Svaret på uppmaningen returneras i HTTP-svaret.

const { app, input, output } = require("@azure/functions");

const assistantPostInput = input.generic({
    type: 'assistantPost',
    id: '{assistantId}',
    chatModel: '%CHAT_MODEL_DEPLOYMENT_NAME%',
    userMessage: '{Query.message}',
    chatStorageConnectionSetting: CHAT_STORAGE_CONNECTION_SETTING,
    collectionName: COLLECTION_NAME
})
app.http('PostUserResponse', {
    methods: ['POST'],
    route: 'assistants/{assistantId}',
    authLevel: 'anonymous',
    extraInputs: [assistantPostInput],
    handler: async (_, context) => {
        const chatState = context.extraInputs.get(assistantPostInput)
        const content = chatState.recentMessages[0].content
        return {
            status: 200,
            body: content,
            headers: {
                'Content-Type': 'text/plain'
            }
        };
    }
})
import { HttpRequest, InvocationContext, app, input, output } from "@azure/functions"

const assistantPostInput = input.generic({
    type: 'assistantPost',
    id: '{assistantId}',
    chatModel: '%CHAT_MODEL_DEPLOYMENT_NAME%',
    userMessage: '{Query.message}',
    chatStorageConnectionSetting: CHAT_STORAGE_CONNECTION_SETTING,
    collectionName: COLLECTION_NAME
})
app.http('PostUserResponse', {
    methods: ['POST'],
    route: 'assistants/{assistantId}',
    authLevel: 'anonymous',
    extraInputs: [assistantPostInput],
    handler: async (_, context) => {
        const chatState: any = context.extraInputs.get(assistantPostInput)
        const content = chatState.recentMessages[0].content
        return {
            status: 200,
            body: content,
            headers: {
                'Content-Type': 'text/plain'
            }
        };
    }
})

Det här exemplet visar skapandeprocessen, där FUNKTIONEN HTTP POST som skickar användarfrågor till chattroboten assistent. Svaret på uppmaningen returneras i HTTP-svaret.

Här är function.json-filen för postanvändarfråga:

{
  "bindings": [
    {
      "authLevel": "function",
      "type": "httpTrigger",
      "direction": "in",
      "name": "Request",
      "route": "assistants/{assistantId}",
      "methods": [
        "post"
      ]
    },
    {
      "type": "http",
      "direction": "out",
      "name": "Response"
    },
    {
      "name": "State",
      "type": "assistantPost",
      "direction": "in",
      "dataType": "string",
      "id": "{assistantId}",
      "userMessage": "{Query.message}",
      "chatModel": "%CHAT_MODEL_DEPLOYMENT_NAME%",
      "chatStorageConnectionSetting": "AzureWebJobsStorage",
      "collectionName": "ChatState"
    }
  ]
}

Mer information om function.json filegenskaper finns i avsnittet Konfiguration .

using namespace System.Net

param($Request, $TriggerMetadata, $State)

$recent_message_content = "No recent messages!"

if ($State.recentMessages.Count -gt 0) {
    $recent_message_content = $State.recentMessages[0].content
}

Push-OutputBinding -Name Response -Value ([HttpResponseContext]@{
    StatusCode = [HttpStatusCode]::OK
    Body       = $recent_message_content
    Headers    = @{
        "Content-Type" = "text/plain"
    }
})

Det här exemplet visar skapandeprocessen, där FUNKTIONEN HTTP POST som skickar användarfrågor till chattroboten assistent. Svaret på uppmaningen returneras i HTTP-svaret.

@apis.function_name("PostUserQuery")
@apis.route(route="assistants/{assistantId}", methods=["POST"])
@apis.assistant_post_input(
    arg_name="state",
    id="{assistantId}",
    user_message="{Query.message}",
    chat_model="%CHAT_MODEL_DEPLOYMENT_NAME%",
    chat_storage_connection_setting=DEFAULT_CHAT_STORAGE_SETTING,
    collection_name=DEFAULT_CHAT_COLLECTION_NAME,
)
def post_user_response(req: func.HttpRequest, state: str) -> func.HttpResponse:
    # Parse the JSON string into a dictionary
    data = json.loads(state)

    # Extract the content of the recentMessage
    recent_message_content = data["recentMessages"][0]["content"]
    return func.HttpResponse(
        recent_message_content, status_code=200, mimetype="text/plain"
    )

Attribut

PostUserQuery Använd attributet för att definiera en assistent efter indatabindning, som stöder följande parametrar:

Parameter Beskrivning
ID ID:t för assistenten som ska uppdateras.
UserMessage Hämtar eller anger användarmeddelandet för chattens slutförandemodell, kodad som en sträng.
AIConnectionName Valfritt. Hämtar eller anger namnet på konfigurationsavsnittet för anslutningsinställningar för AI-tjänsten. För Azure OpenAI: Om det anges söker du efter värdena "Slutpunkt" och "Nyckel" i det här konfigurationsavsnittet. Om det inte anges eller om avsnittet inte finns återgår du till miljövariabler: AZURE_OPENAI_ENDPOINT och AZURE_OPENAI_KEY. För användartilldelad hanterad identitetsautentisering krävs den här egenskapen. För OpenAI-tjänsten (icke-Azure) anger du miljövariabeln OPENAI_API_KEY.
ChatModel Valfritt. Hämtar eller anger ID för modellen som ska användas som en sträng, med standardvärdet gpt-3.5-turbo.
Temperatur Valfritt. Hämtar eller ställer in samplingstemperaturen som ska användas, som en sträng mellan 0 och 2. Högre värden (0.8) gör utdata mer slumpmässiga, medan lägre värden som (0.2) gör utdata mer fokuserade och deterministiska. Du bör använda antingen Temperature eller TopP, men inte båda.
TopP Valfritt. Hämtar eller anger ett alternativ till sampling med temperatur, som kallas kärnsampling, som en sträng. I den här samplingsmetoden tar modellen hänsyn till resultatet av token med top_p sannolikhetsmassa. Det 0.1 innebär att endast de token som består av de 10 främsta% sannolikhetsmassan beaktas. Du bör använda antingen Temperature eller TopP, men inte båda.
MaxTokens Valfritt. Hämtar eller anger det maximala antalet token som ska genereras i slutförandet, som en sträng med standardvärdet 100. Tokenantalet för din fråga plus max_tokens får inte överskrida modellens kontextlängd. De flesta modeller har en kontextlängd på 2 048 token (förutom de senaste modellerna, som stöder 4096).
IsReasoningModel Valfritt. Hämtar eller anger ett värde som anger om chattens slutförandemodell är en resonemangsmodell. Det här alternativet är experimentellt och associerat med resonemangsmodellen tills alla modeller har paritet i de förväntade egenskaperna, med standardvärdet false.

Kommentarer

Med anteckningen PostUserQuery kan du definiera en assistent efter indatabindningen, som stöder följande parametrar:

Komponent Beskrivning
Namn Namnet på utdatabindningen.
ID ID:t för assistenten som ska uppdateras.
userMessage Hämtar eller anger användarmeddelandet för chattens slutförandemodell, kodad som en sträng.
aiConnectionName Valfritt. Hämtar eller anger namnet på konfigurationsavsnittet för anslutningsinställningar för AI-tjänsten. För Azure OpenAI: Om det anges söker du efter värdena "Slutpunkt" och "Nyckel" i det här konfigurationsavsnittet. Om det inte anges eller om avsnittet inte finns återgår du till miljövariabler: AZURE_OPENAI_ENDPOINT och AZURE_OPENAI_KEY. För användartilldelad hanterad identitetsautentisering krävs den här egenskapen. För OpenAI-tjänsten (icke-Azure) anger du miljövariabeln OPENAI_API_KEY.
chatModel Hämtar eller anger ID för modellen som ska användas som en sträng, med standardvärdet gpt-3.5-turbo.
temperatur Valfritt. Hämtar eller ställer in samplingstemperaturen som ska användas, som en sträng mellan 0 och 2. Högre värden (0.8) gör utdata mer slumpmässiga, medan lägre värden som (0.2) gör utdata mer fokuserade och deterministiska. Du bör använda antingen Temperature eller TopP, men inte båda.
topP Valfritt. Hämtar eller anger ett alternativ till sampling med temperatur, som kallas kärnsampling, som en sträng. I den här samplingsmetoden tar modellen hänsyn till resultatet av token med top_p sannolikhetsmassa. Det 0.1 innebär att endast de token som består av de 10 främsta% sannolikhetsmassan beaktas. Du bör använda antingen Temperature eller TopP, men inte båda.
maxTokens Valfritt. Hämtar eller anger det maximala antalet token som ska genereras i slutförandet, som en sträng med standardvärdet 100. Tokenantalet för din fråga plus max_tokens får inte överskrida modellens kontextlängd. De flesta modeller har en kontextlängd på 2 048 token (förutom de senaste modellerna, som stöder 4096).
isReasoningModel Valfritt. Hämtar eller anger ett värde som anger om chattens slutförandemodell är en resonemangsmodell. Det här alternativet är experimentellt och associerat med resonemangsmodellen tills alla modeller har paritet i de förväntade egenskaperna, med standardvärdet false.

Dekoratörer

Under förhandsversionen definierar du utdatabindningen som en generic_output_binding bindning av typen postUserQuery, som stöder följande parametrar:

Parameter Beskrivning
arg_name Namnet på variabeln som representerar bindningsparametern.
ID ID:t för assistenten som ska uppdateras.
user_message Hämtar eller anger användarmeddelandet för chattens slutförandemodell, kodad som en sträng.
ai_connection_name Valfritt. Hämtar eller anger namnet på konfigurationsavsnittet för anslutningsinställningar för AI-tjänsten. För Azure OpenAI: Om det anges söker du efter värdena "Slutpunkt" och "Nyckel" i det här konfigurationsavsnittet. Om det inte anges eller om avsnittet inte finns återgår du till miljövariabler: AZURE_OPENAI_ENDPOINT och AZURE_OPENAI_KEY. För användartilldelad hanterad identitetsautentisering krävs den här egenskapen. För OpenAI-tjänsten (icke-Azure) anger du miljövariabeln OPENAI_API_KEY.
chat_model Hämtar eller anger ID för modellen som ska användas som en sträng, med standardvärdet gpt-3.5-turbo.
temperatur Valfritt. Hämtar eller ställer in samplingstemperaturen som ska användas, som en sträng mellan 0 och 2. Högre värden (0.8) gör utdata mer slumpmässiga, medan lägre värden som (0.2) gör utdata mer fokuserade och deterministiska. Du bör använda antingen Temperature eller TopP, men inte båda.
top_p Valfritt. Hämtar eller anger ett alternativ till sampling med temperatur, som kallas kärnsampling, som en sträng. I den här samplingsmetoden tar modellen hänsyn till resultatet av token med top_p sannolikhetsmassa. Det 0.1 innebär att endast de token som består av de 10 främsta% sannolikhetsmassan beaktas. Du bör använda antingen Temperature eller TopP, men inte båda.
max_tokens Valfritt. Hämtar eller anger det maximala antalet token som ska genereras i slutförandet, som en sträng med standardvärdet 100. Tokenantalet för din fråga plus max_tokens får inte överskrida modellens kontextlängd. De flesta modeller har en kontextlängd på 2 048 token (förutom de senaste modellerna, som stöder 4096).
is_reasoning _model Valfritt. Hämtar eller anger ett värde som anger om chattens slutförandemodell är en resonemangsmodell. Det här alternativet är experimentellt och associerat med resonemangsmodellen tills alla modeller har paritet i de förväntade egenskaperna, med standardvärdet false.

Konfiguration

Bindningen stöder de konfigurationsegenskaper som du anger i filen function.json.

Fastighet Beskrivning
typ Måste vara PostUserQuery.
riktning Måste vara out.
Namn Namnet på utdatabindningen.
ID ID:t för assistenten som ska uppdateras.
userMessage Hämtar eller anger användarmeddelandet för chattens slutförandemodell, kodad som en sträng.
aiConnectionName Valfritt. Hämtar eller anger namnet på konfigurationsavsnittet för anslutningsinställningar för AI-tjänsten. För Azure OpenAI: Om det anges söker du efter värdena "Slutpunkt" och "Nyckel" i det här konfigurationsavsnittet. Om det inte anges eller om avsnittet inte finns återgår du till miljövariabler: AZURE_OPENAI_ENDPOINT och AZURE_OPENAI_KEY. För användartilldelad hanterad identitetsautentisering krävs den här egenskapen. För OpenAI-tjänsten (icke-Azure) anger du miljövariabeln OPENAI_API_KEY.
chatModel Hämtar eller anger ID för modellen som ska användas som en sträng, med standardvärdet gpt-3.5-turbo.
temperatur Valfritt. Hämtar eller ställer in samplingstemperaturen som ska användas, som en sträng mellan 0 och 2. Högre värden (0.8) gör utdata mer slumpmässiga, medan lägre värden som (0.2) gör utdata mer fokuserade och deterministiska. Du bör använda antingen Temperature eller TopP, men inte båda.
topP Valfritt. Hämtar eller anger ett alternativ till sampling med temperatur, som kallas kärnsampling, som en sträng. I den här samplingsmetoden tar modellen hänsyn till resultatet av token med top_p sannolikhetsmassa. Det 0.1 innebär att endast de token som består av de 10 främsta% sannolikhetsmassan beaktas. Du bör använda antingen Temperature eller TopP, men inte båda.
maxTokens Valfritt. Hämtar eller anger det maximala antalet token som ska genereras i slutförandet, som en sträng med standardvärdet 100. Tokenantalet för din fråga plus max_tokens får inte överskrida modellens kontextlängd. De flesta modeller har en kontextlängd på 2 048 token (förutom de senaste modellerna, som stöder 4096).
isReasoningModel Valfritt. Hämtar eller anger ett värde som anger om chattens slutförandemodell är en resonemangsmodell. Det här alternativet är experimentellt och associerat med resonemangsmodellen tills alla modeller har paritet i de förväntade egenskaperna, med standardvärdet false.

Konfiguration

Bindningen stöder dessa egenskaper, som definieras i koden:

Fastighet Beskrivning
ID ID:t för assistenten som ska uppdateras.
userMessage Hämtar eller anger användarmeddelandet för chattens slutförandemodell, kodad som en sträng.
aiConnectionName Valfritt. Hämtar eller anger namnet på konfigurationsavsnittet för anslutningsinställningar för AI-tjänsten. För Azure OpenAI: Om det anges söker du efter värdena "Slutpunkt" och "Nyckel" i det här konfigurationsavsnittet. Om det inte anges eller om avsnittet inte finns återgår du till miljövariabler: AZURE_OPENAI_ENDPOINT och AZURE_OPENAI_KEY. För användartilldelad hanterad identitetsautentisering krävs den här egenskapen. För OpenAI-tjänsten (icke-Azure) anger du miljövariabeln OPENAI_API_KEY.
chatModel Hämtar eller anger ID för modellen som ska användas som en sträng, med standardvärdet gpt-3.5-turbo.
temperatur Valfritt. Hämtar eller ställer in samplingstemperaturen som ska användas, som en sträng mellan 0 och 2. Högre värden (0.8) gör utdata mer slumpmässiga, medan lägre värden som (0.2) gör utdata mer fokuserade och deterministiska. Du bör använda antingen Temperature eller TopP, men inte båda.
topP Valfritt. Hämtar eller anger ett alternativ till sampling med temperatur, som kallas kärnsampling, som en sträng. I den här samplingsmetoden tar modellen hänsyn till resultatet av token med top_p sannolikhetsmassa. Det 0.1 innebär att endast de token som består av de 10 främsta% sannolikhetsmassan beaktas. Du bör använda antingen Temperature eller TopP, men inte båda.
maxTokens Valfritt. Hämtar eller anger det maximala antalet token som ska genereras i slutförandet, som en sträng med standardvärdet 100. Tokenantalet för din fråga plus max_tokens får inte överskrida modellens kontextlängd. De flesta modeller har en kontextlängd på 2 048 token (förutom de senaste modellerna, som stöder 4096).
isReasoningModel Valfritt. Hämtar eller anger ett värde som anger om chattens slutförandemodell är en resonemangsmodell. Det här alternativet är experimentellt och associerat med resonemangsmodellen tills alla modeller har paritet i de förväntade egenskaperna, med standardvärdet false.

Förbrukning

Se avsnittet Exempel för fullständiga exempel.