Dela via


Utvecklarverktyg

Databricks tillhandahåller ett ekosystem med verktyg som hjälper dig att utveckla program och lösningar som integreras med Azure Databricks och programmatiskt hanterar Databricks-resurser och data.

Den här artikeln innehåller en översikt över dessa verktyg och rekommendationer för de bästa verktygen för vanliga utvecklarscenarier.

Vilka verktyg tillhandahåller Databricks för utvecklare?

Följande tabell innehåller en lista över utvecklarverktyg som tillhandahålls av Databricks.

Verktyg beskrivning
Autentisering och auktorisering Konfigurera autentisering och auktorisering för dina verktyg, skript och appar så att de fungerar med Azure Databricks.
Databricks Connect Anslut till Azure Databricks med hjälp av populära integrerade utvecklingsmiljöer (IDE:er) som PyCharm, IntelliJ IDEA, Eclipse, RStudio och JupyterLab.

Om du använder Visual Studio Code rekommenderar Databricks Databricks-tillägget för Visual Studio Code, som bygger på Databricks Connect, eftersom det ger ytterligare funktioner för enklare konfiguration.
Databricks-tillägget för Visual Studio Code Anslut till dina fjärranslutna Azure Databricks-arbetsytor från Visual Studio Code :s integrerade utvecklingsmiljö (IDE).
PyCharm Databricks-plugin-program Konfigurera en anslutning till en fjärransluten Databricks-arbetsyta och kör filer på Databricks-kluster från PyCharm. Det här plugin-programmet har utvecklats och tillhandahålls av JetBrains i samarbete med Databricks.
Databricks SDK:er Automatisera Azure Databricks från kodbibliotek som skrivits för populära språk som Python, Java, Go och R. I stället för att skicka REST API-anrop direkt med curl/Postman kan du använda en SDK för att interagera med Databricks med ett programmeringsspråk som du väljer.
SQL-drivrutiner och -verktyg Anslut till Azure Databricks för att köra SQL-kommandon och skript, interagera programmatiskt med Azure Databricks och integrera Azure Databricks SQL-funktioner i program som skrivits på populära språk som Python, Go, JavaScript och TypeScript.
Databricks CLI Få åtkomst till Azure Databricks-funktioner med hjälp av Databricks kommandoradsgränssnitt (CLI). CLI omsluter Databricks REST API, så i stället för att skicka REST API-anrop direkt med curl eller Postman kan du använda Databricks CLI för att interagera med Databricks.
Databricks-tillgångspaket Implementera metodtips för utveckling, testning och distribution av branschstandard (CI/CD) för dina Azure Databricks-data- och AI-projekt med Databricks Asset Bundles (DAB).
Databricks Terraform-provider och Terraform CDKTF för Databricks Etablera Azure Databricks-infrastruktur och -resurser med Terraform.
Pulumi Databricks-resursprovider Etablera Azure Databricks-infrastruktur och resurser med pulumi infrastructure-as-code (IaC).
CI/CD-verktyg Integrera populära CI/CD-system och ramverk som GitHub Actions, Jenkins och Apache Airflow.

Dricks

Du kan också ansluta många fler populära verktyg från tredje part till kluster och SQL-lager för att få åtkomst till data i Azure Databricks. Se Teknikpartners.

Vilket utvecklarverktyg ska jag använda?

I följande tabell beskrivs rekommendationer för Databricks-verktyg för vanliga utvecklarscenarier.

Scenarier Rekommendation
– Interaktiv utveckling och felsökning från en lokal IDE Databricks-tillägget för Visual Studio Code

PyCharm Databricks-plugin-program

För andra IDE:er använder du Databricks CLI med Databricks Connect
– Direkt interaktion med Databricks från kommandoraden
– Shell-skript
-Experimenterande
– Anropa REST-API:et direkt
– Hantera lokala autentiseringsprofiler
– Synkronisera kod från IDE till Databricks-arbetsytan
Databricks CLI
– Hantera arbetsflöden och distribuera projekt till Databricks
– Tillämpa metodtips för CI/CD
– Samversion, medförfattare, samdistribuera dina resurser och tillgångar som en enhet
– Stöder de vanligaste resurserna
Databricks-tillgångspaket (en funktion i CLI)
– Infrastruktur som kod, CI/CD
– Administrera och skapa arbetsytor, kataloger, metaarkiv och framtvinga behörigheter
– Garantera miljöportabilitet och haveriberedskap
– Många resurser som stöds
Databricks Terraform-provider
– Programutveckling
– Integrera med befintliga distributionssystem
– Skapa anpassade Databricks-arbetsflöden och nya webbtjänster
Databricks Python SDK

Databricks Java SDK

Databricks Go SDK

Databricks R SDK
– Endast avancerade scenarier
– Nästan alla Databricks-resurser är tillgängliga
Databricks REST API