Not
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
Det här avsnittet innehåller referenser och instruktioner för pipelineutvecklare.
Datainläsning och transformeringar implementeras i pipelines av frågor som definierar strömmande tabeller och materialiserade vyer. För att implementera dessa frågeställningar stöder Lakeflow Spark deklarativa pipelines SQL- och Python-gränssnitt. Eftersom dessa gränssnitt ger motsvarande funktioner för de flesta användningsfall för databearbetning kan pipelineutvecklare välja det gränssnitt som de är mest bekväma med.
Python-utveckling
Skapa pipelines med Python-kod.
| Ämne | Description |
|---|---|
| Utveckla pipelinekod med Python | En översikt över hur du utvecklar pipelines i Python. |
| Python-språkreferens för Lakeflow Spark Deklarativa pipelines | Python-referensdokumentation för modulen pipelines . |
| Hantera Python-beroenden för pipelines | Instruktioner för att hantera Python-bibliotek i pipelines. |
| Importera Python-moduler från Git-mappar eller arbetsytefiler | Instruktioner för att använda Python-moduler som du har lagrat i Azure Databricks. |
SQL-utveckling
Skapa pipelines med SQL-kod.
| Ämne | Description |
|---|---|
| Utveckla Lakeflow Spark Deklarativ pipelinekod med SQL | En översikt över hur du utvecklar pipelines i SQL. |
| Sql-språkreferens för pipeline | Referensdokumentation för SQL-syntax för Lakeflow Spark Deklarativa Pipelines. |
| Använd pipelines i Databricks SQL | Använd Databricks SQL för att arbeta med pipelines. |
Andra utvecklingsämnen
I följande avsnitt beskrivs andra sätt att utveckla pipelines.
| Ämne | Description |
|---|---|
| Konvertera en pipeline till ett Databricks Asset Bundle-projekt | Konvertera en befintlig pipeline till ett paket, vilket gör att du kan hantera databearbetningskonfigurationen i en källkontrollerad YAML-fil för enklare underhåll och automatiserade distributioner till målmiljöer. |
| Skapa pipelines med dlt-meta | Använd biblioteket med öppen källkod dlt-meta för att automatisera skapandet av pipelines med ett metadatadrivet ramverk. |
| Utveckla pipelinekod i din lokala utvecklingsmiljö | En översikt över alternativ för att utveckla pipelines lokalt. |