LightGbmTrainerBase<TOptions,TOutput,TTransformer,TModel>.OptionsBase Class
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
public class LightGbmTrainerBase<TOptions,TOutput,TTransformer,TModel>.OptionsBase : Microsoft.ML.Trainers.TrainerInputBaseWithGroupId where TOptions : LightGbmTrainerBase<TOptions,TOutput,TTransformer,TModel>.OptionsBase, new() where TTransformer : ISingleFeaturePredictionTransformer<TModel> where TModel : class
type LightGbmTrainerBase<'Options, 'Output, 'ransformer, 'Model (requires 'Options :> LightGbmTrainerBase<'Options, 'Output, 'ransformer, 'Model>.OptionsBase and 'Options : (new : unit -> 'Options) and 'ransformer :> ISingleFeaturePredictionTransformer<'Model> and 'Model : null)>.OptionsBase = class
inherit TrainerInputBaseWithGroupId
Public Class LightGbmTrainerBase(Of TOptions, TOutput, TTransformer, TModel).OptionsBase
Inherits TrainerInputBaseWithGroupId
Type Parameters
- TOptions
- TOutput
- TTransformer
- TModel
- Inheritance
-
LightGbmTrainerBase<TOptions,TOutput,TTransformer,TModel>.OptionsBase
- Derived
Fields
BatchSize |
Number of data points per batch, when loading data. |
CategoricalSmoothing |
Laplace smooth term in categorical feature split. This can reduce the effect of noises in categorical features, especially for categories with few data. |
EarlyStoppingRound |
Determines the number of rounds, after which training will stop if validation metric doesn't improve. |
ExampleWeightColumnName |
Column to use for example weight. (Inherited from TrainerInputBaseWithWeight) |
FeatureColumnName |
Column to use for features. (Inherited from TrainerInputBase) |
HandleMissingValue |
Whether to enable special handling of missing value or not. |
L2CategoricalRegularization |
L2 regularization for categorical split. |
LabelColumnName |
Column to use for labels. (Inherited from TrainerInputBaseWithLabel) |
LearningRate |
The shrinkage rate for trees, used to prevent over-fitting. |
MaximumBinCountPerFeature |
The maximum number of bins that feature values will be bucketed in. |
MaximumCategoricalSplitPointCount |
Maximum categorical split points to consider when splitting on a categorical feature. |
MinimumExampleCountPerGroup |
The minimum number of data points per categorical group. |
MinimumExampleCountPerLeaf |
The minimal number of data points required to form a new tree leaf. |
NumberOfIterations |
The number of boosting iterations. A new tree is created in each iteration, so this is equivalent to the number of trees. |
NumberOfLeaves |
The maximum number of leaves in one tree. |
NumberOfThreads |
Determines the number of threads used to run LightGBM. |
RowGroupColumnName |
Column to use for example groupId. (Inherited from TrainerInputBaseWithGroupId) |
Seed |
The random seed for LightGBM to use. |
Silent |
Controls the logging level in LighGBM. |
UseCategoricalSplit |
Whether to enable categorical split or not. |
UseZeroAsMissingValue |
Whether to enable the usage of zero (0) as missing value. |
Verbose |
Determines whether to output progress status during training and evaluation. |
Properties
Booster |
Booster parameter to use |