TreeExtensions.FeaturizeByPretrainTreeEnsemble Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
Create PretrainedTreeFeaturizationEstimator, which produces tree-based features given a TreeEnsembleModelParameters.
public static Microsoft.ML.Trainers.FastTree.PretrainedTreeFeaturizationEstimator FeaturizeByPretrainTreeEnsemble (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.Trainers.FastTree.PretrainedTreeFeaturizationEstimator.Options options);
static member FeaturizeByPretrainTreeEnsemble : Microsoft.ML.TransformsCatalog * Microsoft.ML.Trainers.FastTree.PretrainedTreeFeaturizationEstimator.Options -> Microsoft.ML.Trainers.FastTree.PretrainedTreeFeaturizationEstimator
<Extension()>
Public Function FeaturizeByPretrainTreeEnsemble (catalog As TransformsCatalog, options As PretrainedTreeFeaturizationEstimator.Options) As PretrainedTreeFeaturizationEstimator
Parameters
- catalog
- TransformsCatalog
The context TransformsCatalog to create PretrainedTreeFeaturizationEstimator.
The options to configure PretrainedTreeFeaturizationEstimator. See PretrainedTreeFeaturizationEstimator.Options and TreeEnsembleFeaturizationEstimatorBase.OptionsBase for available settings.
Returns
Examples
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Trainers.FastTree;
namespace Samples.Dynamic.Transforms.TreeFeaturization
{
public static class PretrainedTreeEnsembleFeaturizationWithOptions
{
public static void Example()
{
// Create data set
int dataPointCount = 200;
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(dataPointCount).ToList();
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var dataView = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define input and output columns of tree-based featurizer.
string labelColumnName = nameof(DataPoint.Label);
string featureColumnName = nameof(DataPoint.Features);
string treesColumnName = nameof(TransformedDataPoint.Trees);
string leavesColumnName = nameof(TransformedDataPoint.Leaves);
string pathsColumnName = nameof(TransformedDataPoint.Paths);
// Define a tree model whose trees will be extracted to construct a tree
// featurizer.
var trainer = mlContext.BinaryClassification.Trainers.FastTree(
new FastTreeBinaryTrainer.Options
{
NumberOfThreads = 1,
NumberOfTrees = 1,
NumberOfLeaves = 4,
MinimumExampleCountPerLeaf = 1,
FeatureColumnName = featureColumnName,
LabelColumnName = labelColumnName
});
// Train the defined tree model.
var model = trainer.Fit(dataView);
var predicted = model.Transform(dataView);
// Define the configuration of tree-based featurizer.
var options = new PretrainedTreeFeaturizationEstimator.Options()
{
InputColumnName = featureColumnName,
ModelParameters = model.Model.SubModel, // Pretrained tree model.
TreesColumnName = treesColumnName,
LeavesColumnName = leavesColumnName,
PathsColumnName = pathsColumnName
};
// Fit the created featurizer. It doesn't perform actual training
// because a pretrained model is provided.
var treeFeaturizer = mlContext.Transforms
.FeaturizeByPretrainTreeEnsemble(options).Fit(dataView);
// Apply TreeEnsembleFeaturizer to the input data.
var transformed = treeFeaturizer.Transform(dataView);
// Convert IDataView object to a list. Each element in the resulted list
// corresponds to a row in the IDataView.
var transformedDataPoints = mlContext.Data.CreateEnumerable<
TransformedDataPoint>(transformed, false).ToList();
// Print out the transformation of the first 3 data points.
for (int i = 0; i < 3; ++i)
{
var dataPoint = dataPoints[i];
var transformedDataPoint = transformedDataPoints[i];
Console.WriteLine("The original feature vector [" + String.Join(
",", dataPoint.Features) + "] is transformed to three " +
"different tree-based feature vectors:");
Console.WriteLine(" Trees' output values: [" + String.Join(",",
transformedDataPoint.Trees) + "].");
Console.WriteLine(" Leave IDs' 0-1 representation: [" + String
.Join(",", transformedDataPoint.Leaves) + "].");
Console.WriteLine(" Paths IDs' 0-1 representation: [" + String
.Join(",", transformedDataPoint.Paths) + "].");
}
// Expected output:
// The original feature vector[0.8173254, 0.7680227, 0.5581612] is
// transformed to three different tree - based feature vectors:
// Trees' output values: [0.4172185].
// Leave IDs' 0-1 representation: [1,0,0,0].
// Paths IDs' 0-1 representation: [1,1,1].
// The original feature vector[0.7588848, 1.106027, 0.6421779] is
// transformed to three different tree - based feature vectors:
// Trees' output values: [-1].
// Leave IDs' 0-1 representation: [0,0,1,0].
// Paths IDs' 0-1 representation: [1,1,0].
// The original feature vector[0.2737045, 0.2919063, 0.4673147] is
// transformed to three different tree - based feature vectors:
// Trees' output values: [0.4172185].
// Leave IDs' 0-1 representation: [1,0,0,0].
// Paths IDs' 0-1 representation: [1,1,1].
//
// Note that the trained model contains only one tree.
//
// Node 0
// / \
// / Leaf -2
// Node 1
// / \
// / Leaf -3
// Node 2
// / \
// / Leaf -4
// Leaf -1
//
// Thus, if a data point reaches Leaf indexed by -1, its 0-1 path
// representation may be [1,1,1] because that data point
// went through all Node 0, Node 1, and Node 2.
}
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)random.NextDouble();
for (int i = 0; i < count; i++)
{
var label = randomFloat() > 0.5;
yield return new DataPoint
{
Label = label,
// Create random features that are correlated with the label.
// For data points with false label, the feature values are
// slightly increased by adding a constant.
Features = Enumerable.Repeat(label, 3).Select(x => x ?
randomFloat() : randomFloat() + 0.2f).ToArray()
};
}
}
// Example with label and 3 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public bool Label { get; set; }
[VectorType(3)]
public float[] Features { get; set; }
}
// Class used to capture the output of tree-base featurization.
private class TransformedDataPoint : DataPoint
{
// The i-th value is the output value of the i-th decision tree.
public float[] Trees { get; set; }
// The 0-1 encoding of leaves the input feature vector falls into.
public float[] Leaves { get; set; }
// The 0-1 encoding of paths the input feature vector reaches the
// leaves.
public float[] Paths { get; set; }
}
}
}