Dela via


System.Random-klass

Den här artikeln innehåller ytterligare kommentarer till referensdokumentationen för det här API:et.

Klassen Random representerar en pseudo-slumptalsgenerator, som är en algoritm som producerar en sekvens med tal som uppfyller vissa statistiska krav för slumpmässighet.

Pseudo-slumpmässiga tal väljs med samma sannolikhet från en begränsad uppsättning tal. De valda talen är inte helt slumpmässiga eftersom en matematisk algoritm används för att välja dem, men de är tillräckligt slumpmässiga för praktiska ändamål. Implementeringen av Random klassen baseras på en modifierad version av Donald E. Knuths subtraktiva slumptalsgeneratoralgoritm. Mer information finns i D. E. Knuth. Konsten att programmera datorer, volym 2: seminumeriska algoritmer. Addison-Wesley, Reading, MA, tredje upplagan, 1997.

Om du vill generera ett kryptografiskt säkert slumpmässigt tal, till exempel ett som är lämpligt för att skapa ett slumpmässigt lösenord, använder du en av de statiska metoderna i System.Security.Cryptography.RandomNumberGenerator klassen.

Instansiera slumptalsgeneratorn

Du instansierar slumptalsgeneratorn genom att ange ett startvärde (ett startvärde för algoritmen för pseudo-slumptalsgenerering) till en Random klasskonstruktor. Du kan ange startvärdet antingen explicit eller implicit:

  • Konstruktorn Random(Int32) använder ett explicit startvärde som du anger.
  • Konstruktorn Random() använder standardvärdet för startvärde. Det här är det vanligaste sättet att instansiera slumptalsgeneratorn.

I .NET Framework är standardvärdet för frö tidsberoende. I .NET Core skapas standardvärdet för startvärde av den trådstatiska, pseudo-slumpmässiga talgeneratorn.

Om samma frö används för separata Random objekt genererar de samma serie slumpmässiga tal. Detta kan vara användbart för att skapa en testsvit som bearbetar slumpmässiga värden eller för att spela upp spel som härleder sina data från slumpmässiga tal. Observera dock att objekt i processer som Random körs under olika versioner av .NET Framework kan returnera olika serier med slumpmässiga tal även om de instansieras med identiska startvärden.

Om du vill skapa olika sekvenser med slumpmässiga tal kan du göra startvärdet tidsberoende och därmed skapa en annan serie med varje ny instans av Random. Den parametriserade Random(Int32) konstruktorn kan ta ett Int32 värde baserat på antalet tick under den aktuella tiden, medan den parameterlösa Random() konstruktorn använder systemklockan för att generera sitt startvärde. Men endast på .NET Framework, eftersom klockan har begränsad upplösning, leder användningen av den parameterlösa konstruktorn för att skapa olika Random-objekt i nära följd till att slumptalsgeneratorer producerar identiska sekvenser av slumpmässiga tal. I följande exempel visas hur två Random objekt som instansieras i nära följd i ett .NET Framework-program genererar en identisk serie slumpmässiga tal. I de flesta Windows-system Random kommer objekt som skapats inom 15 millisekunder från varandra sannolikt att ha identiska startvärden.

byte[] bytes1 = new byte[100];
byte[] bytes2 = new byte[100];
Random rnd1 = new Random();
Random rnd2 = new Random();

rnd1.NextBytes(bytes1);
rnd2.NextBytes(bytes2);

Console.WriteLine("First Series:");
for (int ctr = bytes1.GetLowerBound(0);
     ctr <= bytes1.GetUpperBound(0);
     ctr++) {
   Console.Write("{0, 5}", bytes1[ctr]);
   if ((ctr + 1) % 10 == 0) Console.WriteLine();
}

Console.WriteLine();

Console.WriteLine("Second Series:");
for (int ctr = bytes2.GetLowerBound(0);
     ctr <= bytes2.GetUpperBound(0);
     ctr++) {
   Console.Write("{0, 5}", bytes2[ctr]);
   if ((ctr + 1) % 10 == 0) Console.WriteLine();
}

// The example displays output like the following:
//       First Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
//
//       Second Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
let bytes1 = Array.zeroCreate 100
let bytes2 = Array.zeroCreate 100
let rnd1 = Random()
let rnd2 = Random()

rnd1.NextBytes bytes1 
rnd2.NextBytes bytes2 

printfn "First Series"
for i = bytes1.GetLowerBound 0 to bytes1.GetUpperBound 0 do
    printf "%5i" bytes1.[i]
    if (i + 1) % 10 = 0 then printfn ""

printfn ""

printfn "Second Series"
for i = bytes2.GetLowerBound 0 to bytes2.GetUpperBound 0 do
    printf "%5i" bytes2.[i]
    if (i + 1) % 10 = 0 then printfn ""

// The example displays output like the following:
//       First Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
//
//       Second Series:
//          97  129  149   54   22  208  120  105   68  177
//         113  214   30  172   74  218  116  230   89   18
//          12  112  130  105  116  180  190  200  187  120
//           7  198  233  158   58   51   50  170   98   23
//          21    1  113   74  146  245   34  255   96   24
//         232  255   23    9  167  240  255   44  194   98
//          18  175  173  204  169  171  236  127  114   23
//         167  202  132   65  253   11  254   56  214  127
//         145  191  104  163  143    7  174  224  247   73
//          52    6  231  255    5  101   83  165  160  231
Module modMain

   Public Sub Main()
      Dim bytes1(99), bytes2(99) As Byte
      Dim rnd1 As New Random()
      Dim rnd2 As New Random()
      
      rnd1.NextBytes(bytes1)
      rnd2.NextBytes(bytes2)
      
      Console.WriteLine("First Series:")
      For ctr As Integer = bytes1.GetLowerBound(0) to bytes1.GetUpperBound(0)
         Console.Write("{0, 5}", bytes1(ctr))
         If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
      Next 
      Console.WriteLine()
      Console.WriteLine("Second Series:")        
      For ctr As Integer = bytes2.GetLowerBound(0) to bytes2.GetUpperBound(0)
         Console.Write("{0, 5}", bytes2(ctr))
         If (ctr + 1) Mod 10 = 0 Then Console.WriteLine()
      Next   
   End Sub
End Module
' The example displays output like the following:
'       First Series:
'          97  129  149   54   22  208  120  105   68  177
'         113  214   30  172   74  218  116  230   89   18
'          12  112  130  105  116  180  190  200  187  120
'           7  198  233  158   58   51   50  170   98   23
'          21    1  113   74  146  245   34  255   96   24
'         232  255   23    9  167  240  255   44  194   98
'          18  175  173  204  169  171  236  127  114   23
'         167  202  132   65  253   11  254   56  214  127
'         145  191  104  163  143    7  174  224  247   73
'          52    6  231  255    5  101   83  165  160  231
'       
'       Second Series:
'          97  129  149   54   22  208  120  105   68  177
'         113  214   30  172   74  218  116  230   89   18
'          12  112  130  105  116  180  190  200  187  120
'           7  198  233  158   58   51   50  170   98   23
'          21    1  113   74  146  245   34  255   96   24
'         232  255   23    9  167  240  255   44  194   98
'          18  175  173  204  169  171  236  127  114   23
'         167  202  132   65  253   11  254   56  214  127
'         145  191  104  163  143    7  174  224  247   73
'          52    6  231  255    5  101   83  165  160  231

Undvik det här problemet genom att skapa ett enda Random objekt i stället för flera objekt. Observera att Random klassen i .NET Core inte har den här begränsningen.

Undvik flera instansieringar

I .NET Framework skapar initiering av två slumptalsgeneratorer i en snäv loop eller i snabb följd två slumptalsgeneratorer som kan producera identiska sekvenser med slumpmässiga tal. I de flesta fall är detta inte utvecklarens avsikt och kan leda till prestandaproblem, eftersom instansiering och initiering av en slumptalsgenerator är en relativt dyr process.

Både för att förbättra prestanda och för att undvika att oavsiktligt skapa separata slumptalsgeneratorer som genererar identiska numeriska sekvenser rekommenderar vi att du skapar ett Random objekt för att generera många slumpmässiga tal över tid, i stället för att skapa nya Random objekt för att generera ett slumpmässigt tal.

Klassen är dock Random inte trådsäker. Om du anropar Random metoder från flera trådar följer du riktlinjerna som beskrivs i nästa avsnitt.

Trådsäkerhet

I stället för att instansiera enskilda Random objekt rekommenderar vi att du skapar en enda Random instans för att generera alla slumptal som behövs av din app. Objekt är dock Random inte trådsäkra. Om appen anropar Random metoder från flera trådar måste du använda ett synkroniseringsobjekt för att säkerställa att endast en tråd kan komma åt slumptalsgeneratorn i taget. Om du inte ser till att Random objektet nås på ett trådsäkert sätt returnerar anrop till metoder som returnerar slumptal 0.

I följande exempel används C#- låssatsen, F# -låsfunktionen och Visual Basic SyncLock-instruktionen för att säkerställa att en enskild slumptalsgenerator används av 11 trådar på ett trådsäkert sätt. Varje tråd genererar 2 miljoner slumpmässiga tal, räknar antalet slumptal som genereras och beräknar summan och uppdaterar sedan summorna för alla trådar när körningen är klar.

using System;
using System.Threading;

public class Example13
{
    [ThreadStatic] static double previous = 0.0;
    [ThreadStatic] static int perThreadCtr = 0;
    [ThreadStatic] static double perThreadTotal = 0.0;
    static CancellationTokenSource source;
    static CountdownEvent countdown;
    static Object randLock, numericLock;
    static Random rand;
    double totalValue = 0.0;
    int totalCount = 0;

    public Example13()
    {
        rand = new Random();
        randLock = new Object();
        numericLock = new Object();
        countdown = new CountdownEvent(1);
        source = new CancellationTokenSource();
    }

    public static void Main()
    {
        Example13 ex = new Example13();
        Thread.CurrentThread.Name = "Main";
        ex.Execute();
    }

    private void Execute()
    {
        CancellationToken token = source.Token;

        for (int threads = 1; threads <= 10; threads++)
        {
            Thread newThread = new Thread(this.GetRandomNumbers);
            newThread.Name = threads.ToString();
            newThread.Start(token);
        }
        this.GetRandomNumbers(token);

        countdown.Signal();
        // Make sure all threads have finished.
        countdown.Wait();
        source.Dispose();

        Console.WriteLine($"\nTotal random numbers generated: {totalCount:N0}");
        Console.WriteLine($"Total sum of all random numbers: {totalValue:N2}");
        Console.WriteLine($"Random number mean: {totalValue / totalCount:N4}");
    }

    private void GetRandomNumbers(Object o)
    {
        CancellationToken token = (CancellationToken)o;
        double result = 0.0;
        countdown.AddCount(1);

        try
        {
            for (int ctr = 0; ctr < 2000000; ctr++)
            {
                // Make sure there's no corruption of Random.
                token.ThrowIfCancellationRequested();

                lock (randLock)
                {
                    result = rand.NextDouble();
                }
                // Check for corruption of Random instance.
                if ((result == previous) && result == 0)
                {
                    source.Cancel();
                }
                else
                {
                    previous = result;
                }
                perThreadCtr++;
                perThreadTotal += result;
            }

            Console.WriteLine($"Thread {Thread.CurrentThread.Name} finished execution.");
            Console.WriteLine($"Random numbers generated: {perThreadCtr:N0}");
            Console.WriteLine($"Sum of random numbers: {perThreadTotal:N2}");
            Console.WriteLine($"Random number mean: {perThreadTotal / perThreadCtr:N4}\n");

            // Update overall totals.
            lock (numericLock)
            {
                totalCount += perThreadCtr;
                totalValue += perThreadTotal;
            }
        }
        catch (OperationCanceledException e)
        {
            Console.WriteLine($"Corruption in Thread {Thread.CurrentThread.Name}");
        }
        finally
        {
            countdown.Signal();
        }
    }
}
// The example displays output like the following:
//       Thread 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,491.05
//       Random number mean: 0.5002
//
//       Thread 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,329.64
//       Random number mean: 0.4997
//
//       Thread 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,166.89
//       Random number mean: 0.5001
//
//       Thread 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,628.37
//       Random number mean: 0.4998
//
//       Thread Main finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,920.89
//       Random number mean: 0.5000
//
//       Thread 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,370.45
//       Random number mean: 0.4997
//
//       Thread 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,330.92
//       Random number mean: 0.4997
//
//       Thread 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,172.79
//       Random number mean: 0.5001
//
//       Thread 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,079.43
//       Random number mean: 0.5000
//
//       Thread 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,817.91
//       Random number mean: 0.4999
//
//       Thread 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,930.63
//       Random number mean: 0.5000
//
//
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 10,998,238.98
//       Random number mean: 0.4999
open System
open System.Threading

type Example() =
    [<ThreadStatic; DefaultValue>]
    static val mutable private previous : float
    
    [<ThreadStatic; DefaultValue>]
    static val mutable private perThreadCtr : int

    [<ThreadStatic; DefaultValue>]
    static val mutable private perThreadTotal : float

    static let source = new CancellationTokenSource()
    static let countdown = new CountdownEvent(1)
    static let randLock = obj ()
    static let numericLock = obj ()
    static let rand = Random()

    let mutable totalValue = 0.0
    let mutable totalCount = 0

    member _.GetRandomNumbers(token: CancellationToken) =
        let mutable result = 0.0
        countdown.AddCount 1
        try 
            try
                for _ = 0 to 1999999 do
                    // Make sure there's no corruption of Random.
                    token.ThrowIfCancellationRequested()

                    lock randLock (fun () -> 
                        result <- rand.NextDouble() )

                    // Check for corruption of Random instance.
                    if result = Example.previous && result = 0.0 then 
                        source.Cancel()
                    else
                        Example.previous <- result
                        
                    Example.perThreadCtr <- Example.perThreadCtr + 1
                    Example.perThreadTotal <- Example.perThreadTotal + result

                // Update overall totals.
                lock numericLock (fun () ->
                    // Show result.
                    printfn "Thread %s finished execution." Thread.CurrentThread.Name
                    printfn $"Random numbers generated: {Example.perThreadCtr:N0}" 
                    printfn $"Sum of random numbers: {Example.perThreadTotal:N2}" 
                    printfn $"Random number mean: {(Example.perThreadTotal / float Example.perThreadCtr):N4}\n"
                    
                    // Update overall totals.
                    totalCount <- totalCount + Example.perThreadCtr
                    totalValue <- totalValue + Example.perThreadTotal)

            with :? OperationCanceledException as e -> 
                printfn "Corruption in Thread %s %s" (e.GetType().Name) Thread.CurrentThread.Name
        finally
            countdown.Signal() |> ignore

    member this.Execute() =
        let token = source.Token
        for i = 1 to 10 do 
            let newThread = Thread(fun () -> this.GetRandomNumbers token)
            newThread.Name <- string i
            newThread.Start()
        this.GetRandomNumbers token
        
        countdown.Signal() |> ignore

        countdown.Wait()

        source.Dispose()

        printfn $"\nTotal random numbers generated: {totalCount:N0}"
        printfn $"Total sum of all random numbers: {totalValue:N2}"
        printfn $"Random number mean: {(totalValue / float totalCount):N4}"

let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()

// The example displays output like the following:
//       Thread 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,491.05
//       Random number mean: 0.5002
//
//       Thread 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,329.64
//       Random number mean: 0.4997
//
//       Thread 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,166.89
//       Random number mean: 0.5001
//
//       Thread 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,628.37
//       Random number mean: 0.4998
//
//       Thread Main finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,920.89
//       Random number mean: 0.5000
//
//       Thread 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,370.45
//       Random number mean: 0.4997
//
//       Thread 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,330.92
//       Random number mean: 0.4997
//
//       Thread 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,172.79
//       Random number mean: 0.5001
//
//       Thread 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,079.43
//       Random number mean: 0.5000
//
//       Thread 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,817.91
//       Random number mean: 0.4999
//
//       Thread 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,930.63
//       Random number mean: 0.5000
//
//
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 10,998,238.98
//       Random number mean: 0.4999
Imports System.Threading

Module Example15
    <ThreadStatic> Dim previous As Double = 0.0
    <ThreadStatic> Dim perThreadCtr As Integer = 0
    <ThreadStatic> Dim perThreadTotal As Double = 0.0
    Dim source As New CancellationTokenSource()
    Dim countdown As New CountdownEvent(1)
    Dim randLock As New Object()
    Dim numericLock As New Object()
    Dim rand As New Random()
    Dim totalValue As Double = 0.0
    Dim totalCount As Integer = 0

    Public Sub Main()
        Thread.CurrentThread.Name = "Main"

        Dim token As CancellationToken = source.Token
        For threads As Integer = 1 To 10
            Dim newThread As New Thread(AddressOf GetRandomNumbers)
            newThread.Name = threads.ToString()
            newThread.Start(token)
        Next
        GetRandomNumbers(token)

        countdown.Signal()
        ' Make sure all threads have finished.
        countdown.Wait()

        Console.WriteLine()
        Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
        Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
        Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
    End Sub

    Private Sub GetRandomNumbers(o As Object)
        Dim token As CancellationToken = CType(o, CancellationToken)
        Dim result As Double = 0.0
        countdown.AddCount(1)

        Try
            For ctr As Integer = 1 To 2000000
                ' Make sure there's no corruption of Random.
                token.ThrowIfCancellationRequested()

                SyncLock randLock
                    result = rand.NextDouble()
                End SyncLock
                ' Check for corruption of Random instance.
                If result = previous AndAlso result = 0 Then
                    source.Cancel()
                Else
                    previous = result
                End If
                perThreadCtr += 1
                perThreadTotal += result
            Next

            Console.WriteLine("Thread {0} finished execution.",
                           Thread.CurrentThread.Name)
            Console.WriteLine("Random numbers generated: {0:N0}", perThreadCtr)
            Console.WriteLine("Sum of random numbers: {0:N2}", perThreadTotal)
            Console.WriteLine("Random number mean: {0:N4}", perThreadTotal / perThreadCtr)
            Console.WriteLine()

            ' Update overall totals.
            SyncLock numericLock
                totalCount += perThreadCtr
                totalValue += perThreadTotal
            End SyncLock
        Catch e As OperationCanceledException
            Console.WriteLine("Corruption in Thread {1}", e.GetType().Name, Thread.CurrentThread.Name)
        Finally
            countdown.Signal()
            source.Dispose()
        End Try
    End Sub
End Module
' The example displays output like the following:
'       Thread 6 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,491.05
'       Random number mean: 0.5002
'       
'       Thread 10 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,329.64
'       Random number mean: 0.4997
'       
'       Thread 4 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,166.89
'       Random number mean: 0.5001
'       
'       Thread 8 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,628.37
'       Random number mean: 0.4998
'       
'       Thread Main finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,920.89
'       Random number mean: 0.5000
'       
'       Thread 3 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,370.45
'       Random number mean: 0.4997
'       
'       Thread 7 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,330.92
'       Random number mean: 0.4997
'       
'       Thread 9 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,172.79
'       Random number mean: 0.5001
'       
'       Thread 5 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,079.43
'       Random number mean: 0.5000
'       
'       Thread 1 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,817.91
'       Random number mean: 0.4999
'       
'       Thread 2 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,930.63
'       Random number mean: 0.5000
'       
'       
'       Total random numbers generated: 22,000,000
'       Total sum of all random numbers: 10,998,238.98
'       Random number mean: 0.4999

Exemplet säkerställer trådsäkerhet på följande sätt:

  • Attributet ThreadStaticAttribute används för att definiera trådlokala variabler som spårar det totala antalet slumpmässiga tal som genereras och deras summa för varje tråd.
  • Ett lås (-instruktionen lock i C#, lock funktionen i F# och -instruktionen SyncLock i Visual Basic) skyddar åtkomsten till variablerna för det totala antalet och summan av alla slumpmässiga tal som genereras i alla trådar.
  • En semafor ( CountdownEvent objektet) används för att säkerställa att huvudtråden blockeras tills alla andra trådar slutför körningen.
  • Exemplet kontrollerar om slumptalsgeneratorn har skadats genom att avgöra om två på varandra följande anrop till slumptalsgenereringsmetoder returnerar 0. Om skada identifieras använder CancellationTokenSource exemplet objektet för att signalera att alla trådar ska avbrytas.
  • Innan varje slumpmässigt tal genereras kontrollerar varje tråd objektets CancellationToken tillstånd. Om annullering begärs anropar CancellationToken.ThrowIfCancellationRequested exemplet metoden för att avbryta tråden.

Följande exempel är identiskt med det första, förutom att det använder ett Task objekt och ett lambda-uttryck i stället för Thread objekt.

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;

public class Example15
{
    static Object randLock, numericLock;
    static Random rand;
    static CancellationTokenSource source;
    double totalValue = 0.0;
    int totalCount = 0;

    public Example15()
    {
        rand = new Random();
        randLock = new Object();
        numericLock = new Object();
        source = new CancellationTokenSource();
    }

    public static async Task Main()
    {
        Example15 ex = new Example15();
        Thread.CurrentThread.Name = "Main";
        await ex.Execute();
    }

    private async Task Execute()
    {
        List<Task> tasks = new List<Task>();

        for (int ctr = 0; ctr <= 10; ctr++)
        {
            CancellationToken token = source.Token;
            int taskNo = ctr;
            tasks.Add(Task.Run(() =>
               {
                   double previous = 0.0;
                   int taskCtr = 0;
                   double taskTotal = 0.0;
                   double result = 0.0;

                   for (int n = 0; n < 2000000; n++)
                   {
                       // Make sure there's no corruption of Random.
                       token.ThrowIfCancellationRequested();

                       lock (randLock)
                       {
                           result = rand.NextDouble();
                       }
                       // Check for corruption of Random instance.
                       if ((result == previous) && result == 0)
                       {
                           source.Cancel();
                       }
                       else
                       {
                           previous = result;
                       }
                       taskCtr++;
                       taskTotal += result;
                   }

                   // Show result.
                   Console.WriteLine($"Task {taskNo} finished execution.");
                   Console.WriteLine($"Random numbers generated: {taskCtr:N0}");
                   Console.WriteLine($"Sum of random numbers: {taskTotal:N2}");
                   Console.WriteLine($"Random number mean: {taskTotal / taskCtr:N4}\n");

                   // Update overall totals.
                   lock (numericLock)
                   {
                       totalCount += taskCtr;
                       totalValue += taskTotal;
                   }
               },
            token));
        }
        try
        {
            await Task.WhenAll(tasks.ToArray());
            Console.WriteLine($"\nTotal random numbers generated: {totalCount:N0}");
            Console.WriteLine($"Total sum of all random numbers: {totalValue:N2}");
            Console.WriteLine($"Random number mean: {totalValue / totalCount:N4}");
        }
        catch (AggregateException e)
        {
            foreach (Exception inner in e.InnerExceptions)
            {
                TaskCanceledException canc = inner as TaskCanceledException;
                if (canc != null)
                    Console.WriteLine($"Task #{canc.Task.Id} cancelled.");
                else
                    Console.WriteLine($"Exception: {inner.GetType().Name}");
            }
        }
        finally
        {
            source.Dispose();
        }
    }
}
// The example displays output like the following:
//       Task 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,502.47
//       Random number mean: 0.5003
//
//       Task 0 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,445.63
//       Random number mean: 0.5002
//
//       Task 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,556.04
//       Random number mean: 0.5003
//
//       Task 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,178.87
//       Random number mean: 0.5001
//
//       Task 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,819.17
//       Random number mean: 0.4999
//
//       Task 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,190.58
//       Random number mean: 0.5001
//
//       Task 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,720.21
//       Random number mean: 0.4999
//
//       Task 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,000.96
//       Random number mean: 0.4995
//
//       Task 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,499.33
//       Random number mean: 0.4997
//
//       Task 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,193.25
//       Random number mean: 0.5001
//
//       Task 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,960.82
//       Random number mean: 0.5000
//
//
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 11,000,067.33
//       Random number mean: 0.5000
open System
open System.Threading
open System.Threading.Tasks

type Example() =
    static let source = new CancellationTokenSource()
    static let rand = Random()

    static let randLock = obj ()
    static let numericLock = obj ()

    let mutable totalValue = 0.0
    let mutable totalCount = 0

    member _.Execute() =
        use source = source // Dispose of the CancellationTokenSource when we're done with it.
        let token = source.Token

        let tasks =
            [| for i = 0 to 10 do
                   Task.Run(
                       (fun () ->
                           let mutable previous = 0.0
                           let mutable taskCtr = 0
                           let mutable taskTotal = 0.0
                           let mutable result = 0.0

                           for _ = 1 to 2000000 do
                               // Make sure there's no corruption of Random.
                               token.ThrowIfCancellationRequested()

                               lock randLock (fun () -> result <- rand.NextDouble())

                               // Check for corruption of Random instance.
                               if result = previous && result = 0.0 then
                                   source.Cancel()
                               else
                                   previous <- result

                               taskCtr <- taskCtr + 1
                               taskTotal <- taskTotal + result

                           lock numericLock (fun () ->
                               // Show result.
                               printfn "Task %i finished execution." i
                               printfn $"Random numbers generated: {taskCtr:N0}"
                               printfn $"Sum of random numbers: {taskTotal:N2}"
                               printfn $"Random number mean: {(taskTotal / float taskCtr):N4}\n"

                               // Update overall totals.
                               totalCount <- totalCount + taskCtr
                               totalValue <- totalValue + taskTotal)),
                       token
                   ) |]

        try
            // Run tasks with F# Async.
            Task.WhenAll tasks
            |> Async.AwaitTask
            |> Async.RunSynchronously

            printfn $"\nTotal random numbers generated: {totalCount:N0}"
            printfn $"Total sum of all random numbers: {totalValue:N2}"
            printfn $"Random number mean: {(totalValue / float totalCount):N4}"
        with
        | :? AggregateException as e ->
            for inner in e.InnerExceptions do
                match inner with
                | :? TaskCanceledException as canc ->
                    if canc <> null then
                        printfn $"Task #{canc.Task.Id} cancelled"
                    else
                        printfn $"Exception: {inner.GetType().Name}"
                | _ -> ()

let ex = Example()
Thread.CurrentThread.Name <- "Main"
ex.Execute()

// The example displays output like the following:
//       Task 1 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,502.47
//       Random number mean: 0.5003
//
//       Task 0 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,445.63
//       Random number mean: 0.5002
//
//       Task 2 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,556.04
//       Random number mean: 0.5003
//
//       Task 3 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,178.87
//       Random number mean: 0.5001
//
//       Task 4 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,819.17
//       Random number mean: 0.4999
//
//       Task 5 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,190.58
//       Random number mean: 0.5001
//
//       Task 6 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,720.21
//       Random number mean: 0.4999
//
//       Task 7 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,000.96
//       Random number mean: 0.4995
//
//       Task 8 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,499.33
//       Random number mean: 0.4997
//
//       Task 9 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 1,000,193.25
//       Random number mean: 0.5001
//
//       Task 10 finished execution.
//       Random numbers generated: 2,000,000
//       Sum of random numbers: 999,960.82
//       Random number mean: 0.5000
//
//
//       Total random numbers generated: 22,000,000
//       Total sum of all random numbers: 11,000,067.33
//       Random number mean: 0.5000
Imports System.Collections.Generic
Imports System.Threading
Imports System.Threading.Tasks

Module Example16
    Dim source As New CancellationTokenSource()
    Dim randLock As New Object()
    Dim numericLock As New Object()
    Dim rand As New Random()
    Dim totalValue As Double = 0.0
    Dim totalCount As Integer = 0

    Public Sub Main()
        Dim tasks As New List(Of Task)()

        For ctr As Integer = 1 To 10
            Dim token As CancellationToken = source.Token
            Dim taskNo As Integer = ctr
            tasks.Add(Task.Run(
                   Sub()
                       Dim previous As Double = 0.0
                       Dim taskCtr As Integer = 0
                       Dim taskTotal As Double = 0.0
                       Dim result As Double = 0.0

                       For n As Integer = 1 To 2000000
                           ' Make sure there's no corruption of Random.
                           token.ThrowIfCancellationRequested()

                           SyncLock randLock
                               result = rand.NextDouble()
                           End SyncLock
                           ' Check for corruption of Random instance.
                           If result = previous AndAlso result = 0 Then
                               source.Cancel()
                           Else
                               previous = result
                           End If
                           taskCtr += 1
                           taskTotal += result
                       Next

                       ' Show result.
                       Console.WriteLine("Task {0} finished execution.", taskNo)
                       Console.WriteLine("Random numbers generated: {0:N0}", taskCtr)
                       Console.WriteLine("Sum of random numbers: {0:N2}", taskTotal)
                       Console.WriteLine("Random number mean: {0:N4}", taskTotal / taskCtr)
                       Console.WriteLine()

                       ' Update overall totals.
                       SyncLock numericLock
                           totalCount += taskCtr
                           totalValue += taskTotal
                       End SyncLock
                   End Sub, token))
        Next

        Try
            Task.WaitAll(tasks.ToArray())
            Console.WriteLine()
            Console.WriteLine("Total random numbers generated: {0:N0}", totalCount)
            Console.WriteLine("Total sum of all random numbers: {0:N2}", totalValue)
            Console.WriteLine("Random number mean: {0:N4}", totalValue / totalCount)
        Catch e As AggregateException
            For Each inner As Exception In e.InnerExceptions
                Dim canc As TaskCanceledException = TryCast(inner, TaskCanceledException)
                If canc IsNot Nothing Then
                    Console.WriteLine("Task #{0} cancelled.", canc.Task.Id)
                Else
                    Console.WriteLine("Exception: {0}", inner.GetType().Name)
                End If
            Next
        Finally
            source.Dispose()
        End Try
    End Sub
End Module
' The example displays output like the following:
'       Task 1 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,502.47
'       Random number mean: 0.5003
'       
'       Task 0 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,445.63
'       Random number mean: 0.5002
'       
'       Task 2 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,556.04
'       Random number mean: 0.5003
'       
'       Task 3 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,178.87
'       Random number mean: 0.5001
'       
'       Task 4 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,819.17
'       Random number mean: 0.4999
'       
'       Task 5 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,190.58
'       Random number mean: 0.5001
'       
'       Task 6 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,720.21
'       Random number mean: 0.4999
'       
'       Task 7 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,000.96
'       Random number mean: 0.4995
'       
'       Task 8 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,499.33
'       Random number mean: 0.4997
'       
'       Task 9 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 1,000,193.25
'       Random number mean: 0.5001
'       
'       Task 10 finished execution.
'       Random numbers generated: 2,000,000
'       Sum of random numbers: 999,960.82
'       Random number mean: 0.5000
'       
'       
'       Total random numbers generated: 22,000,000
'       Total sum of all random numbers: 11,000,067.33
'       Random number mean: 0.5000

Det skiljer sig från det första exemplet på följande sätt:

  • Variablerna för att hålla reda på antalet slumptal som genereras och deras summa i varje aktivitet är lokala för aktiviteten, så det finns inget behov av att använda ThreadStaticAttribute attributet.
  • Den statiska Task.WaitAll metoden används för att säkerställa att huvudtråden inte slutförs innan alla uppgifter har slutförts. Det finns inget behov av objektet CountdownEvent .
  • Undantaget som uppstår vid aktivitetsavbokning visas i Task.WaitAll -metoden. I föregående exempel hanteras den av varje tråd.

Generera olika typer av slumptal

Slumptalsgeneratorn innehåller metoder som gör att du kan generera följande typer av slumptal:

  • En serie Byte värden. Du fastställer antalet bytevärden genom att skicka en matris som initierats till det antal element som du vill att metoden ska återgå till NextBytes metoden. I följande exempel genereras 20 byte.

    Random rnd = new Random();
    Byte[] bytes = new Byte[20];
    rnd.NextBytes(bytes);
    for (int ctr = 1; ctr <= bytes.Length; ctr++)
    {
        Console.Write("{0,3}   ", bytes[ctr - 1]);
        if (ctr % 10 == 0) Console.WriteLine();
    }
    
    // The example displays output like the following:
    //       141    48   189    66   134   212   211    71   161    56
    //       181   166   220   133     9   252   222    57    62    62
    
    let rnd = Random()
    let bytes = Array.zeroCreate 20
    rnd.NextBytes bytes
    
    for i = 1 to bytes.Length do
        printf "%3i   " bytes.[i - 1]
        if (i % 10 = 0) then printfn ""
    
    // The example displays output like the following:
    //       141    48   189    66   134   212   211    71   161    56
    //       181   166   220   133     9   252   222    57    62    62
    
    Module Example9
        Public Sub Main()
            Dim rnd As New Random()
            Dim bytes(19) As Byte
            rnd.NextBytes(bytes)
            For ctr As Integer = 1 To bytes.Length
                Console.Write("{0,3}   ", bytes(ctr - 1))
                If ctr Mod 10 = 0 Then Console.WriteLine()
            Next
        End Sub
    End Module
    ' The example displays output like the following:
    '       141    48   189    66   134   212   211    71   161    56
    '       181   166   220   133     9   252   222    57    62    62
    
  • Ett heltal. Du kan välja om du vill ha ett heltal från 0 till ett maximalt värde (Int32.MaxValue - 1) genom att anropa Next() metoden, ett heltal mellan 0 och ett specifikt värde genom att anropa Next(Int32) metoden eller ett heltal inom ett värdeintervall genom att anropa Next(Int32, Int32) metoden. I de parametriserade överlagringarna är det angivna maximala värdet exklusivt. Det faktiska maximala antalet som genereras är alltså ett mindre än det angivna värdet.

    I följande exempel anropas Next(Int32, Int32) metoden för att generera 10 slumpmässiga tal mellan -10 och 10. Observera att det andra argumentet till metoden anger den exklusiva övre gränsen för det intervall med slumpmässiga värden som returneras av metoden. Med andra ord är det största heltal som metoden kan returnera ett mindre än det här värdet.

    Random rnd = new Random();
    for (int ctr = 0; ctr < 10; ctr++)
    {
        Console.Write("{0,3}   ", rnd.Next(-10, 11));
    }
    
    // The example displays output like the following:
    //    2     9    -3     2     4    -7    -3    -8    -8     5
    
    let rnd = Random()
    for i = 0 to 9 do 
        printf "%3i   " (rnd.Next(-10, 11))
    
    // The example displays output like the following:
    //    2     9    -3     2     4    -7    -3    -8    -8     5
    
    Module Example11
        Public Sub Main()
            Dim rnd As New Random()
            For ctr As Integer = 0 To 9
                Console.Write("{0,3}   ", rnd.Next(-10, 11))
            Next
        End Sub
    End Module
    ' The example displays output like the following:
    '    2     9    -3     2     4    -7    -3    -8    -8     5
    
  • Ett enda flyttalvärde från 0,0 till mindre än 1,0 genom att anropa NextDouble metoden. Den exklusiva övre gränsen för det slumptal som returneras av metoden är 1, så dess faktiska övre gräns är 0,99999999999999978. I följande exempel genereras 10 slumpmässiga flyttalsnummer.

    Random rnd = new Random();
    for (int ctr = 0; ctr < 10; ctr++)
    {
        Console.Write("{0,-19:R}   ", rnd.NextDouble());
        if ((ctr + 1) % 3 == 0) Console.WriteLine();
    }
    
    // The example displays output like the following:
    //    0.7911680553998649    0.0903414949264105    0.79776258291572455
    //    0.615568345233597     0.652644504165577     0.84023809378977776
    //    0.099662564741290441   0.91341467383942321  0.96018602045261581
    //    0.74772306473354022
    
    let rnd = Random()
    for i = 0 to 9 do 
        printf $"{rnd.NextDouble(),-19:R}   "
        if (i + 1) % 3 = 0 then printfn ""
    
    // The example displays output like the following:
    //    0.7911680553998649    0.0903414949264105    0.79776258291572455
    //    0.615568345233597     0.652644504165577     0.84023809378977776
    //    0.099662564741290441   0.91341467383942321  0.96018602045261581
    //    0.74772306473354022
    
    Module Example10
        Public Sub Main()
            Dim rnd As New Random()
            For ctr As Integer = 0 To 9
                Console.Write("{0,-19:R}   ", rnd.NextDouble())
                If (ctr + 1) Mod 3 = 0 Then Console.WriteLine()
            Next
        End Sub
    End Module
    ' The example displays output like the following:
    '    0.7911680553998649    0.0903414949264105    0.79776258291572455    
    '    0.615568345233597     0.652644504165577     0.84023809378977776   
    '    0.099662564741290441  0.91341467383942321   0.96018602045261581   
    '    0.74772306473354022
    

Viktigt!

Med Next(Int32, Int32) metoden kan du ange intervallet för det returnerade slumpmässiga talet. Parametern maxValue , som anger det returnerade talet för det övre intervallet, är dock ett exklusivt värde, inte ett inkluderande värde. Det innebär att metodanropet Next(0, 100) returnerar ett värde mellan 0 och 99 och inte mellan 0 och 100.

Du kan också använda Random klassen för sådana uppgifter som att generera slumpmässiga booleska värden, generera slumpmässiga flyttalsvärden i ett angivet intervall, generera Generera slumpmässiga 64-bitars heltal och hämta ett unikt element från en matris eller samling.

Byt ut din egen algoritm

Du kan implementera en egen slumptalsgenerator genom att ärva från klassen och ange algoritmen Random för slumptalsgenerering. Om du vill ange en egen algoritm måste du åsidosätta Sample metoden som implementerar algoritmen för slumptalsgenerering. Du bör också åsidosätta Next(), Next(Int32, Int32) och NextBytes-metoderna för att säkerställa att de anropar den åsidosatta Sample-metoden. Du behöver inte åsidosätta metoderna Next(Int32) och NextDouble.

Ett exempel som härleds från Random klassen och ändrar dess standardgenerator för pseudo-slumptal finns på Sample referenssidan.

Hämta samma sekvens med slumpmässiga värden

Ibland vill du generera samma sekvens av slumptal i scenarier för programvarutest och i spelspel. Genom att testa med samma sekvens med slumpmässiga tal kan du identifiera regressioner och bekräfta felkorrigeringar. Med samma sekvens av slumptal i spel kan du spela upp tidigare spel.

Du kan generera samma sekvens med slumpmässiga tal genom att ange samma startvärde för Random(Int32) konstruktorn. Seed-värdet ger ett startvärde för algoritmen för pseudo-slumptalsgenerering. I följande exempel används 100100 som ett godtyckligt startvärde för att instansiera Random objektet, visar 20 slumpmässiga flyttalsvärden och bevarar startvärdet. Den återställer sedan startvärdet, instansierar en ny slumptalsgenerator och visar samma 20 slumpmässiga flyttalsvärden. Observera att exemplet kan ge olika sekvenser av slumpmässiga tal om de körs på olika versioner av .NET.

using System;
using System.IO;

public class Example12
{
    public static void Main()
    {
        int seed = 100100;
        ShowRandomNumbers(seed);
        Console.WriteLine();

        PersistSeed(seed);

        DisplayNewRandomNumbers();
    }

    private static void ShowRandomNumbers(int seed)
    {
        Random rnd = new Random(seed);
        for (int ctr = 0; ctr <= 20; ctr++)
            Console.WriteLine(rnd.NextDouble());
    }

    private static void PersistSeed(int seed)
    {
        FileStream fs = new FileStream(@".\seed.dat", FileMode.Create);
        BinaryWriter bin = new BinaryWriter(fs);
        bin.Write(seed);
        bin.Close();
    }

    private static void DisplayNewRandomNumbers()
    {
        FileStream fs = new FileStream(@".\seed.dat", FileMode.Open);
        BinaryReader bin = new BinaryReader(fs);
        int seed = bin.ReadInt32();
        bin.Close();

        Random rnd = new Random(seed);
        for (int ctr = 0; ctr <= 20; ctr++)
            Console.WriteLine(rnd.NextDouble());
    }
}
// The example displays output like the following:
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
//
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
open System
open System.IO

let showRandomNumbers seed =
    let rnd = Random seed
    for _ = 0 to 20 do 
        printfn $"{rnd.NextDouble()}"

let persistSeed (seed: int) =
    use bin = new BinaryWriter(new FileStream(@".\seed.dat", FileMode.Create))
    bin.Write seed

let displayNewRandomNumbers () =
    use bin = new BinaryReader(new FileStream(@".\seed.dat", FileMode.Open))
    let seed = bin.ReadInt32()

    let rnd = Random seed
    for _ = 0 to 20 do 
        printfn $"{rnd.NextDouble()}"

let seed = 100100
showRandomNumbers seed
printfn ""

persistSeed seed

displayNewRandomNumbers ()

// The example displays output like the following:
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
//
//       0.500193602172748
//       0.0209461245783354
//       0.465869495396442
//       0.195512794514891
//       0.928583675496552
//       0.729333720509584
//       0.381455668891527
//       0.0508996467343064
//       0.019261200921266
//       0.258578445417145
//       0.0177532266908107
//       0.983277184415272
//       0.483650274334313
//       0.0219647376900375
//       0.165910115077118
//       0.572085966622497
//       0.805291457942357
//       0.927985211335116
//       0.4228545699375
//       0.523320379910674
//       0.157783938645285
Imports System.IO

Module Example14
    Public Sub Main()
        Dim seed As Integer = 100100
        ShowRandomNumbers(seed)
        Console.WriteLine()

        PersistSeed(seed)

        DisplayNewRandomNumbers()
    End Sub

    Private Sub ShowRandomNumbers(seed As Integer)
        Dim rnd As New Random(seed)
        For ctr As Integer = 0 To 20
            Console.WriteLine(rnd.NextDouble())
        Next
    End Sub

    Private Sub PersistSeed(seed As Integer)
        Dim fs As New FileStream(".\seed.dat", FileMode.Create)
        Dim bin As New BinaryWriter(fs)
        bin.Write(seed)
        bin.Close()
    End Sub

    Private Sub DisplayNewRandomNumbers()
        Dim fs As New FileStream(".\seed.dat", FileMode.Open)
        Dim bin As New BinaryReader(fs)
        Dim seed As Integer = bin.ReadInt32()
        bin.Close()

        Dim rnd As New Random(seed)
        For ctr As Integer = 0 To 20
            Console.WriteLine(rnd.NextDouble())
        Next
    End Sub
End Module
' The example displays output like the following:
'       0.500193602172748
'       0.0209461245783354
'       0.465869495396442
'       0.195512794514891
'       0.928583675496552
'       0.729333720509584
'       0.381455668891527
'       0.0508996467343064
'       0.019261200921266
'       0.258578445417145
'       0.0177532266908107
'       0.983277184415272
'       0.483650274334313
'       0.0219647376900375
'       0.165910115077118
'       0.572085966622497
'       0.805291457942357
'       0.927985211335116
'       0.4228545699375
'       0.523320379910674
'       0.157783938645285
'       
'       0.500193602172748
'       0.0209461245783354
'       0.465869495396442
'       0.195512794514891
'       0.928583675496552
'       0.729333720509584
'       0.381455668891527
'       0.0508996467343064
'       0.019261200921266
'       0.258578445417145
'       0.0177532266908107
'       0.983277184415272
'       0.483650274334313
'       0.0219647376900375
'       0.165910115077118
'       0.572085966622497
'       0.805291457942357
'       0.927985211335116
'       0.4228545699375
'       0.523320379910674
'       0.157783938645285

Hämta unika sekvenser med slumptal

Om du tillhandahåller olika startvärden till instanser av Random klassen får varje slumptalsgenerator att skapa en annan sekvens med värden. Du kan ange ett startvärde antingen explicit genom att anropa Random(Int32) konstruktorn eller implicit genom att anropa Random() konstruktorn. De flesta utvecklare kallar den parameterlösa konstruktorn, som använder systemklockan. I följande exempel används den här metoden för att instansiera två Random instanser. Varje instans visar en serie med 10 slumpmässiga heltal.

using System;
using System.Threading;

public class Example16
{
    public static void Main()
    {
        Console.WriteLine("Instantiating two random number generators...");
        Random rnd1 = new Random();
        Thread.Sleep(2000);
        Random rnd2 = new Random();

        Console.WriteLine("\nThe first random number generator:");
        for (int ctr = 1; ctr <= 10; ctr++)
            Console.WriteLine($"   {rnd1.Next()}");

        Console.WriteLine("\nThe second random number generator:");
        for (int ctr = 1; ctr <= 10; ctr++)
            Console.WriteLine($"   {rnd2.Next()}");
    }
}
// The example displays output like the following:
//       Instantiating two random number generators...
//
//       The first random number generator:
//          643164361
//          1606571630
//          1725607587
//          2138048432
//          496874898
//          1969147632
//          2034533749
//          1840964542
//          412380298
//          47518930
//
//       The second random number generator:
//          1251659083
//          1514185439
//          1465798544
//          517841554
//          1821920222
//          195154223
//          1538948391
//          1548375095
//          546062716
//          897797880
open System
open System.Threading

printfn "Instantiating two random number generators..."
let rnd1 = Random()
Thread.Sleep 2000
let rnd2 = Random()

printfn "\nThe first random number generator:"
for _ = 1 to 10 do 
    printfn $"   {rnd1.Next()}"

printfn "\nThe second random number generator:"
for _ = 1 to 10 do 
    printfn $"   {rnd2.Next()}"

// The example displays output like the following:
//       Instantiating two random number generators...
//
//       The first random number generator:
//          643164361
//          1606571630
//          1725607587
//          2138048432
//          496874898
//          1969147632
//          2034533749
//          1840964542
//          412380298
//          47518930
//
//       The second random number generator:
//          1251659083
//          1514185439
//          1465798544
//          517841554
//          1821920222
//          195154223
//          1538948391
//          1548375095
//          546062716
//          897797880
Imports System.Threading

Module Example17
    Public Sub Main()
        Console.WriteLine("Instantiating two random number generators...")
        Dim rnd1 As New Random()
        Thread.Sleep(2000)
        Dim rnd2 As New Random()
        Console.WriteLine()

        Console.WriteLine("The first random number generator:")
        For ctr As Integer = 1 To 10
            Console.WriteLine("   {0}", rnd1.Next())
        Next
        Console.WriteLine()

        Console.WriteLine("The second random number generator:")
        For ctr As Integer = 1 To 10
            Console.WriteLine("   {0}", rnd2.Next())
        Next
    End Sub
End Module
' The example displays output like the following:
'       Instantiating two random number generators...
'       
'       The first random number generator:
'          643164361
'          1606571630
'          1725607587
'          2138048432
'          496874898
'          1969147632
'          2034533749
'          1840964542
'          412380298
'          47518930
'       
'       The second random number generator:
'          1251659083
'          1514185439
'          1465798544
'          517841554
'          1821920222
'          195154223
'          1538948391
'          1548375095
'          546062716
'          897797880

Men på grund av dess ändliga upplösning identifierar systemklockan inte tidsskillnader som är mindre än cirka 15 millisekunder. Om koden anropar överbelastningen Random() på .NET Framework för att instansiera två Random objekt i följd kan du därför oavsiktligt ge objekten identiska startvärden. (Klassen Random i .NET Core har inte den här begränsningen.) Om du vill se detta i föregående exempel kommenterar du ut metodanropet Thread.Sleep och kompilerar och kör exemplet igen.

För att förhindra att detta händer rekommenderar vi att du instansierar ett enda Random objekt i stället för flera objekt. Men eftersom Random det inte är trådsäkert måste du använda någon synkroniseringsenhet om du kommer åt en Random instans från flera trådar. Mer information finns i avsnittet Trådsäkerhet . Alternativt kan du använda en fördröjningsmekanism, till exempel den Sleep metod som användes i föregående exempel, för att säkerställa att instansiationerna sker mer än 15 millisekunder ifrån varandra.

Hämta heltal i ett angivet intervall

Du kan hämta heltal i ett angivet intervall genom att anropa Next(Int32, Int32) metoden, vilket gör att du kan ange både den nedre och den övre gränsen för de tal som du vill att slumptalsgeneratorn ska returnera. Den övre gränsen är ett exklusivt värde, inte ett inkluderande värde. Den ingår alltså inte i det värdeintervall som returneras av metoden. I följande exempel används den här metoden för att generera slumpmässiga heltal mellan -10 och 10. Observera att det anger 11, vilket är ett större värde än önskat värde, som värdet maxValue för argumentet i metodanropet.

Random rnd = new Random();
for (int ctr = 1; ctr <= 15; ctr++)
{
    Console.Write("{0,3}    ", rnd.Next(-10, 11));
    if (ctr % 5 == 0) Console.WriteLine();
}

// The example displays output like the following:
//        -2     -5     -1     -2     10
//        -3      6     -4     -8      3
//        -7     10      5     -2      4
let rnd = Random()
for i = 1 to 15 do 
    printf "%3i    " (rnd.Next(-10, 11))
    if i % 5 = 0 then printfn ""
// The example displays output like the following:
//        -2     -5     -1     -2     10
//        -3      6     -4     -8      3
//        -7     10      5     -2      4
Module Example12
    Public Sub Main()
        Dim rnd As New Random()
        For ctr As Integer = 1 To 15
            Console.Write("{0,3}    ", rnd.Next(-10, 11))
            If ctr Mod 5 = 0 Then Console.WriteLine()
        Next
    End Sub
End Module
' The example displays output like the following:
'        -2     -5     -1     -2     10
'        -3      6     -4     -8      3
'        -7     10      5     -2      4

Hämta heltal med ett angivet antal siffror

Du kan anropa Next(Int32, Int32) metoden för att hämta tal med ett angivet antal siffror. Om du till exempel vill hämta tal med fyra siffror (det vill säga tal mellan 1 000 och 9999) anropar Next(Int32, Int32) du metoden med värdet minValue 1 000 och värdet maxValue 1 0000, vilket visas i följande exempel.

Random rnd = new Random();
for (int ctr = 1; ctr <= 50; ctr++)
{
    Console.Write("{0,3}    ", rnd.Next(1000, 10000));
    if (ctr % 10 == 0) Console.WriteLine();
}

// The example displays output like the following:
//    9570    8979    5770    1606    3818    4735    8495    7196    7070    2313
//    5279    6577    5104    5734    4227    3373    7376    6007    8193    5540
//    7558    3934    3819    7392    1113    7191    6947    4963    9179    7907
//    3391    6667    7269    1838    7317    1981    5154    7377    3297    5320
//    9869    8694    2684    4949    2999    3019    2357    5211    9604    2593
let rnd = Random()
for i = 1 to 50 do
    printf "%3i    " (rnd.Next(1000, 10000))
    if i % 10 = 0 then printfn ""

// The example displays output like the following:
//    9570    8979    5770    1606    3818    4735    8495    7196    7070    2313
//    5279    6577    5104    5734    4227    3373    7376    6007    8193    5540
//    7558    3934    3819    7392    1113    7191    6947    4963    9179    7907
//    3391    6667    7269    1838    7317    1981    5154    7377    3297    5320
//    9869    8694    2684    4949    2999    3019    2357    5211    9604    2593
Module Example13
    Public Sub Main()
        Dim rnd As New Random()
        For ctr As Integer = 1 To 50
            Console.Write("{0,3}    ", rnd.Next(1000, 10000))
            If ctr Mod 10 = 0 Then Console.WriteLine()
        Next
    End Sub
End Module
' The example displays output like the following:
'    9570    8979    5770    1606    3818    4735    8495    7196    7070    2313
'    5279    6577    5104    5734    4227    3373    7376    6007    8193    5540
'    7558    3934    3819    7392    1113    7191    6947    4963    9179    7907
'    3391    6667    7269    1838    7317    1981    5154    7377    3297    5320
'    9869    8694    2684    4949    2999    3019    2357    5211    9604    2593

Hämta flyttalsvärden i ett angivet intervall

Metoden NextDouble returnerar slumpmässiga flyttalsvärden som sträcker sig från 0 till mindre än 1. Du vill dock ofta generera slumpmässiga värden i något annat intervall.

Om intervallet mellan minsta och högsta önskade värden är 1 kan du lägga till skillnaden mellan önskat startintervall och 0 till det tal som returneras av NextDouble metoden. I följande exempel genereras 10 slumpmässiga tal mellan -1 och 0.

Random rnd = new Random();
for (int ctr = 1; ctr <= 10; ctr++)
    Console.WriteLine(rnd.NextDouble() - 1);

// The example displays output like the following:
//       -0.930412760437658
//       -0.164699016215605
//       -0.9851692803135
//       -0.43468508843085
//       -0.177202483255976
//       -0.776813320245972
//       -0.0713201854710096
//       -0.0912875561468711
//       -0.540621722368813
//       -0.232211863730201
let rnd = Random()

for _ = 1 to 10 do
    printfn "%O" (rnd.NextDouble() - 1.0)

// The example displays output like the following:
//       -0.930412760437658
//       -0.164699016215605
//       -0.9851692803135
//       -0.43468508843085
//       -0.177202483255976
//       -0.776813320245972
//       -0.0713201854710096
//       -0.0912875561468711
//       -0.540621722368813
//       -0.232211863730201
Module Example6
    Public Sub Main()
        Dim rnd As New Random()
        For ctr As Integer = 1 To 10
            Console.WriteLine(rnd.NextDouble() - 1)
        Next
    End Sub
End Module
' The example displays output like the following:
'       -0.930412760437658
'       -0.164699016215605
'       -0.9851692803135
'       -0.43468508843085
'       -0.177202483255976
'       -0.776813320245972
'       -0.0713201854710096
'       -0.0912875561468711
'       -0.540621722368813
'       -0.232211863730201

Om du vill generera slumpmässiga flyttalsnummer vars nedre gräns är 0 men övre gräns är större än 1 (eller, om det gäller negativa tal, vars nedre gräns är mindre än -1 och den övre gränsen är 0), multiplicerar du det slumpmässiga talet med det icke-noll-bundna. Följande exempel gör detta för att generera 20 miljoner slumpmässiga flyttalsnummer som sträcker sig från 0 till Int64.MaxValue. I visas också fördelningen av de slumpmässiga värden som genereras av metoden.

const long ONE_TENTH = 922337203685477581;

Random rnd = new Random();
double number;
int[] count = new int[10];

// Generate 20 million integer values between.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
    number = rnd.NextDouble() * Int64.MaxValue;
    // Categorize random numbers into 10 groups.
    count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32}   {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
    Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                       ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
                       count[ctr], count[ctr] / 20000000.0);

// The example displays output like the following:
//                           Range                            Count      Pct.
//
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L

let rnd = Random()

// Generate 20 million random integers.
let count =
    Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) )
    |> Array.countBy (fun x -> x / (float ONE_TENTH) |> int ) // Categorize into 10 groups and count them.
    |> Array.map snd

// Display breakdown by range.
printfn "%28s %32s   %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
    let r1 = int64 i * ONE_TENTH
    let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
    printfn $"{r1,25:N0}-{r2,25:N0}  {count.[i],8:N0}   {float count.[i] / 20000000.0,7:P2}"

// The example displays output like the following:
//                           Range                            Count      Pct.
//
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
Module Example5
    Public Sub Main()
        Const ONE_TENTH As Long = 922337203685477581

        Dim rnd As New Random()
        Dim number As Long
        Dim count(9) As Integer

        ' Generate 20 million integer values.
        For ctr As Integer = 1 To 20000000
            number = CLng(rnd.NextDouble() * Int64.MaxValue)
            ' Categorize random numbers.
            count(CInt(number \ ONE_TENTH)) += 1
        Next
        ' Display breakdown by range.
        Console.WriteLine("{0,28} {1,32}   {2,7}", "Range", "Count", "Pct.")
        Console.WriteLine()
        For ctr As Integer = 0 To 9
            Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                            If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
                            count(ctr), count(ctr) / 20000000)
        Next
    End Sub
End Module
' The example displays output like the following:
'                           Range                            Count      Pct.
'    
'                            0-  922,337,203,685,477,580  1,996,148    9.98 %
'      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
'    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
'    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
'    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
'    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
'    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
'    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
'    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
'    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %

Om du vill generera slumpmässiga flyttalsnummer mellan två godtyckliga värden, som Next(Int32, Int32) metoden gör för heltal, använder du följande formel:

Random.NextDouble() * (maxValue - minValue) + minValue

I följande exempel genereras 1 miljon slumpmässiga tal som sträcker sig från 10,0 till 11,0 och visar deras fördelning.

Random rnd = new Random();
int lowerBound = 10;
int upperBound = 11;
int[] range = new int[10];
for (int ctr = 1; ctr <= 1000000; ctr++)
{
    Double value = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound;
    range[(int)Math.Truncate((value - lowerBound) * 10)]++;
}

for (int ctr = 0; ctr <= 9; ctr++)
{
    Double lowerRange = 10 + ctr * .1;
    Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0}  ({3,7:P2})",
                      lowerRange, lowerRange + .1, range[ctr],
                      range[ctr] / 1000000.0);
}

// The example displays output like the following:
//       10.0 to 10.1:   99,929  ( 9.99 %)
//       10.1 to 10.2:  100,189  (10.02 %)
//       10.2 to 10.3:   99,384  ( 9.94 %)
//       10.3 to 10.4:  100,240  (10.02 %)
//       10.4 to 10.5:   99,397  ( 9.94 %)
//       10.5 to 10.6:  100,580  (10.06 %)
//       10.6 to 10.7:  100,293  (10.03 %)
//       10.7 to 10.8:  100,135  (10.01 %)
//       10.8 to 10.9:   99,905  ( 9.99 %)
//       10.9 to 11.0:   99,948  ( 9.99 %)
let rnd = Random()

let lowerBound = 10.0
let upperBound = 11.0

let range =
    Array.init 1000000 (fun _ -> rnd.NextDouble() * (upperBound - lowerBound) +  lowerBound)
    |> Array.countBy (fun x -> Math.Truncate((x - lowerBound) * 10.0) |> int)
    |> Array.map snd

for i = 0 to 9 do 
    let lowerRange = 10.0 + float i * 0.1
    printfn $"{lowerRange:N1} to {lowerRange + 0.1:N1}: {range.[i],8:N0}  ({float range.[i] / 1000000.0,6:P2})"

// The example displays output like the following:
//       10.0 to 10.1:   99,929  ( 9.99 %)
//       10.1 to 10.2:  100,189  (10.02 %)
//       10.2 to 10.3:   99,384  ( 9.94 %)
//       10.3 to 10.4:  100,240  (10.02 %)
//       10.4 to 10.5:   99,397  ( 9.94 %)
//       10.5 to 10.6:  100,580  (10.06 %)
//       10.6 to 10.7:  100,293  (10.03 %)
//       10.7 to 10.8:  100,135  (10.01 %)
//       10.8 to 10.9:   99,905  ( 9.99 %)
//       10.9 to 11.0:   99,948  ( 9.99 %)
Module Example7
    Public Sub Main()
        Dim rnd As New Random()
        Dim lowerBound As Integer = 10
        Dim upperBound As Integer = 11
        Dim range(9) As Integer
        For ctr As Integer = 1 To 1000000
            Dim value As Double = rnd.NextDouble() * (upperBound - lowerBound) + lowerBound
            range(CInt(Math.Truncate((value - lowerBound) * 10))) += 1
        Next

        For ctr As Integer = 0 To 9
            Dim lowerRange As Double = 10 + ctr * 0.1
            Console.WriteLine("{0:N1} to {1:N1}: {2,8:N0}  ({3,7:P2})",
                           lowerRange, lowerRange + 0.1, range(ctr),
                           range(ctr) / 1000000.0)
        Next
    End Sub
End Module
' The example displays output like the following:
'       10.0 to 10.1:   99,929  ( 9.99 %)
'       10.1 to 10.2:  100,189  (10.02 %)
'       10.2 to 10.3:   99,384  ( 9.94 %)
'       10.3 to 10.4:  100,240  (10.02 %)
'       10.4 to 10.5:   99,397  ( 9.94 %)
'       10.5 to 10.6:  100,580  (10.06 %)
'       10.6 to 10.7:  100,293  (10.03 %)
'       10.7 to 10.8:  100,135  (10.01 %)
'       10.8 to 10.9:   99,905  ( 9.99 %)
'       10.9 to 11.0:   99,948  ( 9.99 %)

Generera slumpmässiga booleska värden

Klassen Random tillhandahåller inte metoder som genererar Boolean värden. Du kan dock definiera din egen klass eller metod för att göra det. I följande exempel definieras en klass, BooleanGenerator, med en enda metod, NextBoolean. Klassen BooleanGenerator lagrar ett Random objekt som en privat variabel. Metoden NextBoolean anropar Random.Next(Int32, Int32) metoden och skickar resultatet till Convert.ToBoolean(Int32) metoden. Observera att 2 används som argument för att ange det slumpmässiga talets övre gräns. Eftersom det här är ett exklusivt värde returnerar metodanropet antingen 0 eller 1.

using System;

public class Example1
{
    public static void Main()
    {
        // Instantiate the Boolean generator.
        BooleanGenerator boolGen = new BooleanGenerator();
        int totalTrue = 0, totalFalse = 0;

        // Generate 1,0000 random Booleans, and keep a running total.
        for (int ctr = 0; ctr < 1000000; ctr++)
        {
            bool value = boolGen.NextBoolean();
            if (value)
                totalTrue++;
            else
                totalFalse++;
        }
        Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                          totalTrue,
                          ((double)totalTrue) / (totalTrue + totalFalse));
        Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                          totalFalse,
                          ((double)totalFalse) / (totalTrue + totalFalse));
    }
}

public class BooleanGenerator
{
    Random rnd;

    public BooleanGenerator()
    {
        rnd = new Random();
    }

    public bool NextBoolean()
    {
        return rnd.Next(0, 2) == 1;
    }
}
// The example displays output like the following:
//       Number of true values:  500,004 (50.000 %)
//       Number of false values: 499,996 (50.000 %)
open System

type BooleanGenerator() =
    let rnd = Random()

    member _.NextBoolean() =
        rnd.Next(0, 2) = 1

let boolGen = BooleanGenerator()
let mutable totalTrue, totalFalse = 0, 0

for _ = 1 to 1000000 do
    let value = boolGen.NextBoolean()
    if value then 
        totalTrue <- totalTrue + 1
    else 
        totalFalse <- totalFalse + 1

printfn $"Number of true values:  {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"

// The example displays output like the following:
//       Number of true values:  500,004 (50.000 %)
//       Number of false values: 499,996 (50.000 %)
Module Example2
    Public Sub Main()
        ' Instantiate the Boolean generator.
        Dim boolGen As New BooleanGenerator()
        Dim totalTrue, totalFalse As Integer

        ' Generate 1,0000 random Booleans, and keep a running total.
        For ctr As Integer = 0 To 9999999
            Dim value As Boolean = boolGen.NextBoolean()
            If value Then
                totalTrue += 1
            Else
                totalFalse += 1
            End If
        Next
        Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                        totalTrue,
                        totalTrue / (totalTrue + totalFalse))
        Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                        totalFalse,
                        totalFalse / (totalTrue + totalFalse))
    End Sub
End Module

Public Class BooleanGenerator
   Dim rnd As Random
   
   Public Sub New()
      rnd = New Random()
   End Sub

   Public Function NextBoolean() As Boolean
      Return Convert.ToBoolean(rnd.Next(0, 2))
   End Function
End Class
' The example displays the following output:
'       Number of true values:  500,004 (50.000 %)
'       Number of false values: 499,996 (50.000 %)

I stället för att skapa en separat klass för att generera slumpmässiga Boolean värden kunde exemplet helt enkelt ha definierat en enda metod. I så fall Random bör dock objektet ha definierats som en variabel på klassnivå för att undvika att instansiera en ny Random instans i varje metodanrop. I Visual Basic kan den slumpmässiga instansen definieras som en statisk variabel i NextBoolean metoden. I följande exempel finns en implementering.

Random rnd = new Random();

int totalTrue = 0, totalFalse = 0;

// Generate 1,000,000 random Booleans, and keep a running total.
for (int ctr = 0; ctr < 1000000; ctr++)
{
    bool value = NextBoolean();
    if (value)
        totalTrue++;
    else
        totalFalse++;
}
Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                  totalTrue,
                  ((double)totalTrue) / (totalTrue + totalFalse));
Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                  totalFalse,
                  ((double)totalFalse) / (totalTrue + totalFalse));

bool NextBoolean()
{
    return rnd.Next(0, 2) == 1;
}

// The example displays output like the following:
//       Number of true values:  499,777 (49.978 %)
//       Number of false values: 500,223 (50.022 %)
let rnd = Random()

let nextBool () =
    rnd.Next(0, 2) = 1

let mutable totalTrue, totalFalse = 0, 0

for _ = 1 to 1000000 do
    let value = nextBool ()
    if value then 
        totalTrue <- totalTrue + 1
    else 
        totalFalse <- totalFalse + 1

printfn $"Number of true values:  {totalTrue,7:N0} ({(double totalTrue) / double (totalTrue + totalFalse):P3})"
printfn $"Number of false values: {totalFalse,7:N0} ({(double totalFalse) / double (totalTrue + totalFalse):P3})"

// The example displays output like the following:
//       Number of true values:  499,777 (49.978 %)
//       Number of false values: 500,223 (50.022 %)
Module Example3
    Public Sub Main()
        Dim totalTrue, totalFalse As Integer

        ' Generate 1,0000 random Booleans, and keep a running total.
        For ctr As Integer = 0 To 9999999
            Dim value As Boolean = NextBoolean()
            If value Then
                totalTrue += 1
            Else
                totalFalse += 1
            End If
        Next
        Console.WriteLine("Number of true values:  {0,7:N0} ({1:P3})",
                        totalTrue,
                        totalTrue / (totalTrue + totalFalse))
        Console.WriteLine("Number of false values: {0,7:N0} ({1:P3})",
                        totalFalse,
                        totalFalse / (totalTrue + totalFalse))
    End Sub

    Public Function NextBoolean() As Boolean
        Static rnd As New Random()
        Return Convert.ToBoolean(rnd.Next(0, 2))
    End Function
End Module
' The example displays the following output:
'       Number of true values:  499,777 (49.978 %)
'       Number of false values: 500,223 (50.022 %)

Generera slumpmässiga 64-bitars heltal

Överlagringarna av Next metoden returnerar 32-bitars heltal. Men i vissa fall kanske du vill arbeta med 64-bitars heltal. Du kan göra detta på följande sätt:

  1. Anropa NextDouble-metoden för att hämta ett flyttal med dubbel precision.

  2. Multiplicera värdet med Int64.MaxValue.

I följande exempel används den här tekniken för att generera 20 miljoner slumpmässiga långa heltal och kategorisera dem i 10 lika med grupper. Sedan utvärderas fördelningen av de slumpmässiga talen genom att räkna talet i varje grupp från 0 till Int64.MaxValue. Som utdata från exemplet visar distribueras talen mer eller mindre lika genom intervallet för ett långt heltal.

const long ONE_TENTH = 922337203685477581;

Random rnd = new Random();
long number;
int[] count = new int[10];

// Generate 20 million long integers.
for (int ctr = 1; ctr <= 20000000; ctr++)
{
    number = (long)(rnd.NextDouble() * Int64.MaxValue);
    // Categorize random numbers.
    count[(int)(number / ONE_TENTH)]++;
}
// Display breakdown by range.
Console.WriteLine("{0,28} {1,32}   {2,7}\n", "Range", "Count", "Pct.");
for (int ctr = 0; ctr <= 9; ctr++)
    Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                       ctr < 9 ? ctr * ONE_TENTH + ONE_TENTH - 1 : Int64.MaxValue,
                       count[ctr], count[ctr] / 20000000.0);

// The example displays output like the following:
//                           Range                            Count      Pct.
//
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
[<Literal>]
let ONE_TENTH = 922337203685477581L

let rnd = Random()

let count =
    // Generate 20 million random long integers.
    Array.init 20000000 (fun _ -> rnd.NextDouble() * (float Int64.MaxValue) |> int64 )
    |> Array.countBy (fun x -> x / ONE_TENTH) // Categorize and count random numbers.
    |> Array.map snd

// Display breakdown by range.
printfn "%28s %32s   %7s\n" "Range" "Count" "Pct."
for i = 0 to 9 do
    let r1 = int64 i * ONE_TENTH
    let r2 = if i < 9 then r1 + ONE_TENTH - 1L else Int64.MaxValue
    printfn $"{r1,25:N0}-{r2,25:N0}  {count.[i],8:N0}   {float count.[i] / 20000000.0,7:P2}"

// The example displays output like the following:
//                           Range                            Count      Pct.
//
//                            0-  922,337,203,685,477,580  1,996,148    9.98 %
//      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
//    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
//    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
//    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
//    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
//    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
//    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
//    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
//    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %
Module Example8
    Public Sub Main()
        Const ONE_TENTH As Long = 922337203685477581

        Dim rnd As New Random()
        Dim number As Long
        Dim count(9) As Integer

        ' Generate 20 million long integers.
        For ctr As Integer = 1 To 20000000
            number = CLng(rnd.NextDouble() * Int64.MaxValue)
            ' Categorize random numbers.
            count(CInt(number \ ONE_TENTH)) += 1
        Next
        ' Display breakdown by range.
        Console.WriteLine("{0,28} {1,32}   {2,7}", "Range", "Count", "Pct.")
        Console.WriteLine()
        For ctr As Integer = 0 To 9
            Console.WriteLine("{0,25:N0}-{1,25:N0}  {2,8:N0}   {3,7:P2}", ctr * ONE_TENTH,
                            If(ctr < 9, ctr * ONE_TENTH + ONE_TENTH - 1, Int64.MaxValue),
                            count(ctr), count(ctr) / 20000000)
        Next
    End Sub
End Module
' The example displays output like the following:
'                           Range                            Count      Pct.
'    
'                            0-  922,337,203,685,477,580  1,996,148    9.98 %
'      922,337,203,685,477,581-1,844,674,407,370,955,161  2,000,293   10.00 %
'    1,844,674,407,370,955,162-2,767,011,611,056,432,742  2,000,094   10.00 %
'    2,767,011,611,056,432,743-3,689,348,814,741,910,323  2,000,159   10.00 %
'    3,689,348,814,741,910,324-4,611,686,018,427,387,904  1,999,552   10.00 %
'    4,611,686,018,427,387,905-5,534,023,222,112,865,485  1,998,248    9.99 %
'    5,534,023,222,112,865,486-6,456,360,425,798,343,066  2,000,696   10.00 %
'    6,456,360,425,798,343,067-7,378,697,629,483,820,647  2,001,637   10.01 %
'    7,378,697,629,483,820,648-8,301,034,833,169,298,228  2,002,870   10.01 %
'    8,301,034,833,169,298,229-9,223,372,036,854,775,807  2,000,303   10.00 %

En alternativ teknik som använder bitmanipulering genererar inte riktigt slumpmässiga tal. Den här tekniken anropar Next() för att generera två heltal, vänsterflyttar en med 32 bitar och utför en OR-operation på dem. Den här tekniken har två begränsningar:

  1. Eftersom bit 31 är teckenbiten är värdet i bit 31 i det resulterande långa heltalet alltid 0. Detta kan åtgärdas genom att generera ett slumpmässigt 0 eller 1, vänsterförskjuta det 31 bitar och koppla det med det ursprungliga slumpmässiga långa heltalet.

  2. Mer allvarligt, eftersom sannolikheten för att värdet som returneras av Next() kommer att vara 0, kommer det att finnas få om några slumpmässiga tal i intervallet 0x0-0x00000000FFFFFFFF.

Hämta byte i ett angivet intervall

Med överlagringarna av Next metoden kan du ange intervallet för slumpmässiga tal, men metoden NextBytes gör det inte. I följande exempel implementeras en NextBytes metod som gör att du kan ange intervallet för de returnerade byteen. Den definierar en Random2 klass som härleds från Random och överbelastar dess NextBytes metod.

using System;

public class Example3
{
    public static void Main()
    {
        Random2 rnd = new Random2();
        Byte[] bytes = new Byte[10000];
        int[] total = new int[101];
        rnd.NextBytes(bytes, 0, 101);

        // Calculate how many of each value we have.
        foreach (var value in bytes)
            total[value]++;

        // Display the results.
        for (int ctr = 0; ctr < total.Length; ctr++)
        {
            Console.Write("{0,3}: {1,-3}   ", ctr, total[ctr]);
            if ((ctr + 1) % 5 == 0) Console.WriteLine();
        }
    }
}

public class Random2 : Random
{
    public Random2() : base()
    { }

    public Random2(int seed) : base(seed)
    { }

    public void NextBytes(byte[] bytes, byte minValue, byte maxValue)
    {
        for (int ctr = bytes.GetLowerBound(0); ctr <= bytes.GetUpperBound(0); ctr++)
            bytes[ctr] = (byte)Next(minValue, maxValue);
    }
}
// The example displays output like the following:
//         0: 115     1: 119     2: 92      3: 98      4: 92
//         5: 102     6: 103     7: 84      8: 93      9: 116
//        10: 91     11: 98     12: 106    13: 91     14: 92
//        15: 101    16: 100    17: 96     18: 97     19: 100
//        20: 101    21: 106    22: 112    23: 82     24: 85
//        25: 102    26: 107    27: 98     28: 106    29: 102
//        30: 109    31: 108    32: 94     33: 101    34: 107
//        35: 101    36: 86     37: 100    38: 101    39: 102
//        40: 113    41: 95     42: 96     43: 89     44: 99
//        45: 81     46: 89     47: 105    48: 100    49: 85
//        50: 103    51: 103    52: 93     53: 89     54: 91
//        55: 97     56: 105    57: 97     58: 110    59: 86
//        60: 116    61: 94     62: 117    63: 98     64: 110
//        65: 93     66: 102    67: 100    68: 105    69: 83
//        70: 81     71: 97     72: 85     73: 70     74: 98
//        75: 100    76: 110    77: 114    78: 83     79: 90
//        80: 96     81: 112    82: 102    83: 102    84: 99
//        85: 81     86: 100    87: 93     88: 99     89: 118
//        90: 95     91: 124    92: 108    93: 96     94: 104
//        95: 106    96: 99     97: 99     98: 92     99: 99
//       100: 108
open System

type Random2() =
    inherit Random()

    member this.NextBytes(bytes: byte[], minValue: byte, maxValue: byte) =
        for i=bytes.GetLowerBound(0) to bytes.GetUpperBound(0) do
            bytes.[i] <- this.Next(int minValue, int maxValue) |> byte

let rnd = Random2()
let bytes = Array.zeroCreate 10000
let total = Array.zeroCreate 101
rnd.NextBytes(bytes, 0uy, 101uy)

// Calculate how many of each value we have.
for v in bytes do 
    total.[int v] <- total.[int v] + 1

// Display the results.
for i = 0 to total.Length - 1 do
    printf "%3i: %-3i   " i total.[i]
    if (i + 1) % 5 = 0 then printfn ""

// The example displays output like the following:
//         0: 115     1: 119     2: 92      3: 98      4: 92
//         5: 102     6: 103     7: 84      8: 93      9: 116
//        10: 91     11: 98     12: 106    13: 91     14: 92
//        15: 101    16: 100    17: 96     18: 97     19: 100
//        20: 101    21: 106    22: 112    23: 82     24: 85
//        25: 102    26: 107    27: 98     28: 106    29: 102
//        30: 109    31: 108    32: 94     33: 101    34: 107
//        35: 101    36: 86     37: 100    38: 101    39: 102
//        40: 113    41: 95     42: 96     43: 89     44: 99
//        45: 81     46: 89     47: 105    48: 100    49: 85
//        50: 103    51: 103    52: 93     53: 89     54: 91
//        55: 97     56: 105    57: 97     58: 110    59: 86
//        60: 116    61: 94     62: 117    63: 98     64: 110
//        65: 93     66: 102    67: 100    68: 105    69: 83
//        70: 81     71: 97     72: 85     73: 70     74: 98
//        75: 100    76: 110    77: 114    78: 83     79: 90
//        80: 96     81: 112    82: 102    83: 102    84: 99
//        85: 81     86: 100    87: 93     88: 99     89: 118
//        90: 95     91: 124    92: 108    93: 96     94: 104
//        95: 106    96: 99     97: 99     98: 92     99: 99
//       100: 108
Module Example4
    Public Sub Main()
        Dim rnd As New Random2()
        Dim bytes(9999) As Byte
        Dim total(100) As Integer
        rnd.NextBytes(bytes, 0, 101)

        ' Calculate how many of each value we have.
        For Each value In bytes
            total(value) += 1
        Next

        ' Display the results.
        For ctr As Integer = 0 To total.Length - 1
            Console.Write("{0,3}: {1,-3}   ", ctr, total(ctr))
            If (ctr + 1) Mod 5 = 0 Then Console.WriteLine()
        Next
    End Sub
End Module

Public Class Random2 : Inherits Random
   Public Sub New()
      MyBase.New()
   End Sub   

   Public Sub New(seed As Integer)
      MyBase.New(seed)
   End Sub

   Public Overloads Sub NextBytes(bytes() As Byte, 
                                  minValue As Byte, maxValue As Byte)
      For ctr As Integer = bytes.GetLowerbound(0) To bytes.GetUpperBound(0)
         bytes(ctr) = CByte(MyBase.Next(minValue, maxValue))
      Next
   End Sub
End Class 
' The example displays output like the following:
'         0: 115     1: 119     2: 92      3: 98      4: 92
'         5: 102     6: 103     7: 84      8: 93      9: 116
'        10: 91     11: 98     12: 106    13: 91     14: 92
'        15: 101    16: 100    17: 96     18: 97     19: 100
'        20: 101    21: 106    22: 112    23: 82     24: 85
'        25: 102    26: 107    27: 98     28: 106    29: 102
'        30: 109    31: 108    32: 94     33: 101    34: 107
'        35: 101    36: 86     37: 100    38: 101    39: 102
'        40: 113    41: 95     42: 96     43: 89     44: 99
'        45: 81     46: 89     47: 105    48: 100    49: 85
'        50: 103    51: 103    52: 93     53: 89     54: 91
'        55: 97     56: 105    57: 97     58: 110    59: 86
'        60: 116    61: 94     62: 117    63: 98     64: 110
'        65: 93     66: 102    67: 100    68: 105    69: 83
'        70: 81     71: 97     72: 85     73: 70     74: 98
'        75: 100    76: 110    77: 114    78: 83     79: 90
'        80: 96     81: 112    82: 102    83: 102    84: 99
'        85: 81     86: 100    87: 93     88: 99     89: 118
'        90: 95     91: 124    92: 108    93: 96     94: 104
'        95: 106    96: 99     97: 99     98: 92     99: 99
'       100: 108

Metoden NextBytes(Byte[], Byte, Byte) omsluter ett anrop till Next(Int32, Int32) metoden och anger det minsta värdet och ett större än det maximala värdet (i det här fallet 0 och 101) som vi vill ska returneras i bytematrisen. Eftersom vi är säkra på att heltalsvärdena som returneras av Next metoden ligger inom datatypens intervall Byte kan vi på ett säkert sätt omvandla dem (i C# och F#) eller konvertera dem (i Visual Basic) från heltal till byte.

Hämta ett element från en matris eller samling slumpmässigt

Slumptal fungerar ofta som index för att hämta värden från matriser eller samlingar. Om du vill hämta ett slumpmässigt indexvärde kan du anropa Next(Int32, Int32) metoden och använda matrisens nedre gräns som värde för dess minValue argument och ett som är större än matrisens övre gräns som värdet för dess maxValue argument. För en nollbaserad matris motsvarar detta dess Length egenskap, eller ett större än det värde som returneras av Array.GetUpperBound metoden. I följande exempel hämtas slumpmässigt namnet på en stad i USA från en matris med städer.

String[] cities = { "Atlanta", "Boston", "Chicago", "Detroit",
                    "Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
                    "Jersey City", "Kansas City", "Los Angeles",
                    "Milwaukee", "New York", "Omaha", "Philadelphia",
                    "Raleigh", "San Francisco", "Tulsa", "Washington" };
Random rnd = new Random();
int index = rnd.Next(0, cities.Length);
Console.WriteLine($"Today's city of the day: {cities[index]}");

// The example displays output like the following:
//   Today's city of the day: Honolulu
let cities = 
    [| "Atlanta"; "Boston"; "Chicago"; "Detroit";
       "Fort Wayne"; "Greensboro"; "Honolulu"; "Indianapolis";
       "Jersey City"; "Kansas City"; "Los Angeles";
       "Milwaukee"; "New York"; "Omaha"; "Philadelphia";
       "Raleigh"; "San Francisco"; "Tulsa"; "Washington" |]

let rnd = Random()

let index = rnd.Next(0,cities.Length)

printfn "Today's city of the day: %s" cities.[index]

// The example displays output like the following:
//   Today's city of the day: Honolulu
Module Example1
    Public Sub Main()
        Dim cities() As String = {"Atlanta", "Boston", "Chicago", "Detroit",
                                 "Fort Wayne", "Greensboro", "Honolulu", "Indianapolis",
                                 "Jersey City", "Kansas City", "Los Angeles",
                                 "Milwaukee", "New York", "Omaha", "Philadelphia",
                                 "Raleigh", "San Francisco", "Tulsa", "Washington"}
        Dim rnd As New Random()
        Dim index As Integer = rnd.Next(0, cities.Length)
        Console.WriteLine("Today's city of the day: {0}",
                        cities(index))
    End Sub
End Module
' The example displays output like the following:
'   Today's city of the day: Honolulu

Hämta ett unikt element från en matris eller samling

En slumptalsgenerator kan alltid returnera dubblettvärden. När talintervallet blir mindre eller antalet värden som genereras blir större ökar sannolikheten för dubbletter. Om slumpmässiga värden måste vara unika genereras fler tal för att kompensera för dubbletter, vilket resulterar i allt sämre prestanda.

Det finns ett antal tekniker för att hantera det här scenariot. En vanlig lösning är att skapa en matris eller samling som innehåller de värden som ska hämtas och en parallell matris som innehåller slumpmässiga flyttalsnummer. Den andra matrisen fylls med slumpmässiga tal när den första matrisen Array.Sort(Array, Array) skapas och metoden används för att sortera den första matrisen med hjälp av värdena i den parallella matrisen.

Om du till exempel utvecklar ett Solitaire-spel vill du se till att varje kort endast används en gång. I stället för att generera slumpmässiga tal för att hämta ett kort och spåra om kortet redan har delats ut kan du skapa en parallell matris med slumpmässiga tal som kan användas för att sortera kortleken. När kortleken har sorterats kan appen behålla en pekare som anger indexet för nästa kort på kortleken.

I följande exempel visas den här metoden. Den definierar en Card klass som representerar ett spelkort och en Dealer klass som ger en kortlek med blandade kort. Klasskonstruktorn Dealer fyller i två matriser: en deck matris som har klassomfattning och som representerar alla kort i kortleken och en lokal order matris som har samma antal element som matrisen deck och fylls med slumpmässigt genererade Double värden. Metoden Array.Sort(Array, Array) anropas sedan för att sortera matrisen deck baserat på värdena i matrisen order .

using System;

// A class that represents an individual card in a playing deck.
public class Card
{
    public Suit Suit;
    public FaceValue FaceValue;

    public override String ToString()
    {
        return String.Format("{0:F} of {1:F}", this.FaceValue, this.Suit);
    }
}

public enum Suit { Hearts, Diamonds, Spades, Clubs };

public enum FaceValue
{
    Ace = 1, Two, Three, Four, Five, Six,
    Seven, Eight, Nine, Ten, Jack, Queen,
    King
};

public class Dealer
{
    Random rnd;
    // A deck of cards, without Jokers.
    Card[] deck = new Card[52];
    // Parallel array for sorting cards.
    Double[] order = new Double[52];
    // A pointer to the next card to deal.
    int ptr = 0;
    // A flag to indicate the deck is used.
    bool mustReshuffle = false;

    public Dealer()
    {
        rnd = new Random();
        // Initialize the deck.
        int deckCtr = 0;
        foreach (var suit in Enum.GetValues(typeof(Suit)))
        {
            foreach (var faceValue in Enum.GetValues(typeof(FaceValue)))
            {
                Card card = new Card();
                card.Suit = (Suit)suit;
                card.FaceValue = (FaceValue)faceValue;
                deck[deckCtr] = card;
                deckCtr++;
            }
        }

        for (int ctr = 0; ctr < order.Length; ctr++)
            order[ctr] = rnd.NextDouble();

        Array.Sort(order, deck);
    }

    public Card[] Deal(int numberToDeal)
    {
        if (mustReshuffle)
        {
            Console.WriteLine("There are no cards left in the deck");
            return null;
        }

        Card[] cardsDealt = new Card[numberToDeal];
        for (int ctr = 0; ctr < numberToDeal; ctr++)
        {
            cardsDealt[ctr] = deck[ptr];
            ptr++;
            if (ptr == deck.Length)
                mustReshuffle = true;

            if (mustReshuffle & ctr < numberToDeal - 1)
            {
                Console.WriteLine($"Can only deal the {ctr + 1} cards remaining on the deck.");
                return cardsDealt;
            }
        }
        return cardsDealt;
    }
}

public class Example17
{
    public static void Main()
    {
        Dealer dealer = new Dealer();
        ShowCards(dealer.Deal(20));
    }

    private static void ShowCards(Card[] cards)
    {
        foreach (var card in cards)
            if (card != null)
                Console.WriteLine($"{card.FaceValue} of {card.Suit}");
    }
}
// The example displays output like the following:
//       Six of Diamonds
//       King of Clubs
//       Eight of Clubs
//       Seven of Clubs
//       Queen of Clubs
//       King of Hearts
//       Three of Spades
//       Ace of Clubs
//       Four of Hearts
//       Three of Diamonds
//       Nine of Diamonds
//       Two of Hearts
//       Ace of Hearts
//       Three of Hearts
//       Four of Spades
//       Eight of Hearts
//       Queen of Diamonds
//       Two of Clubs
//       Four of Diamonds
//       Jack of Hearts
open System

type Suit =
    | Clubs
    | Diamonds
    | Hearts
    | Spades

type Face =
    | Ace | Two | Three
    | Four | Five | Six
    | Seven | Eight | Nine
    | Ten | Jack | Queen | King

type Card = { Face: Face; Suit: Suit }

let suits = [ Clubs; Diamonds; Hearts; Spades ]
let faces = [ Ace; Two; Three; Four; Five; Six; Seven; Eight; Nine; Ten; Jack; Queen; King ]

type Dealer() =
    let rnd = Random()
    let mutable pos = 0
    // Parallel array for sorting cards.
    let order = Array.init (suits.Length * faces.Length) (fun _ -> rnd.NextDouble() )
    // A deck of cards, without Jokers.
    let deck = [|
        for s in suits do
            for f in faces do
                { Face = f; Suit = s } |]
    // Shuffle the deck.
    do Array.Sort(order, deck)

    // Deal a number of cards from the deck, return None if failed
    member _.Deal(numberToDeal) : Card [] option = 
        if numberToDeal = 0 || pos = deck.Length then
            printfn "There are no cards left in the deck"
            None
        else 
            let cards = deck.[pos .. numberToDeal + pos - 1]
            if numberToDeal > deck.Length - pos then
                printfn "Can only deal the %i cards remaining on the deck." (deck.Length - pos)
            pos <- min (pos + numberToDeal) deck.Length
            Some cards

let showCards cards = 
    for card in cards do
        printfn $"{card.Face} of {card.Suit}"

let dealer = Dealer()

dealer.Deal 20
|> Option.iter showCards

// The example displays output like the following:
//       Six of Diamonds
//       King of Clubs
//       Eight of Clubs
//       Seven of Clubs
//       Queen of Clubs
//       King of Hearts
//       Three of Spades
//       Ace of Clubs
//       Four of Hearts
//       Three of Diamonds
//       Nine of Diamonds
//       Two of Hearts
//       Ace of Hearts
//       Three of Hearts
//       Four of Spades
//       Eight of Hearts
//       Queen of Diamonds
//       Two of Clubs
//       Four of Diamonds
//       Jack of Hearts
' A class that represents an individual card in a playing deck.
Public Class Card
   Public Suit As Suit
   Public FaceValue As FaceValue
   
   Public Overrides Function ToString() As String
      Return String.Format("{0:F} of {1:F}", Me.FaceValue, Me.Suit)
   End Function
End Class

Public Enum Suit As Integer
   Hearts = 0
   Diamonds = 1
   Spades = 2
   Clubs = 3
End Enum

Public Enum FaceValue As Integer
   Ace = 1
   Two = 2
   Three = 3
   Four = 4
   Five = 5
   Six = 6
   Seven = 7
   Eight = 8
   Nine = 9
   Ten = 10
   Jack = 11
   Queen = 12
   King = 13
End Enum

Public Class Dealer
   Dim rnd As Random
   ' A deck of cards, without Jokers.
   Dim deck(51) As Card
   ' Parallel array for sorting cards.
   Dim order(51) As Double
   ' A pointer to the next card to deal.
   Dim ptr As Integer = 0
   ' A flag to indicate the deck is used.
   Dim mustReshuffle As Boolean
   
   Public Sub New()
      rnd = New Random()
      ' Initialize the deck.
      Dim deckCtr As Integer = 0
      For Each Suit In [Enum].GetValues(GetType(Suit))
         For Each faceValue In [Enum].GetValues(GetType(FaceValue))
            Dim card As New Card()
            card.Suit = CType(Suit, Suit)
            card.FaceValue = CType(faceValue, FaceValue)
            deck(deckCtr) = card  
            deckCtr += 1
         Next
      Next
      For ctr As Integer = 0 To order.Length - 1
         order(ctr) = rnd.NextDouble()   
      Next   
      Array.Sort(order, deck)
   End Sub

   Public Function Deal(numberToDeal As Integer) As Card()
      If mustReshuffle Then
         Console.WriteLine("There are no cards left in the deck")
         Return Nothing
      End If
      
      Dim cardsDealt(numberToDeal - 1) As Card
      For ctr As Integer = 0 To numberToDeal - 1
         cardsDealt(ctr) = deck(ptr)
         ptr += 1
         If ptr = deck.Length Then 
            mustReshuffle = True
         End If
         If mustReshuffle And ctr < numberToDeal - 1
            Console.WriteLine("Can only deal the {0} cards remaining on the deck.", 
                              ctr + 1)
            Return cardsDealt
         End If
      Next
      Return cardsDealt
   End Function
End Class

Public Module Example
   Public Sub Main()
      Dim dealer As New Dealer()
      ShowCards(dealer.Deal(20))
   End Sub
   
   Private Sub ShowCards(cards() As Card)
      For Each card In cards
         If card IsNot Nothing Then _
            Console.WriteLine("{0} of {1}", card.FaceValue, card.Suit)
      Next
   End Sub
End Module
' The example displays output like the following:
'       Six of Diamonds
'       King of Clubs
'       Eight of Clubs
'       Seven of Clubs
'       Queen of Clubs
'       King of Hearts
'       Three of Spades
'       Ace of Clubs
'       Four of Hearts
'       Three of Diamonds
'       Nine of Diamonds
'       Two of Hearts
'       Ace of Hearts
'       Three of Hearts
'       Four of Spades
'       Eight of Hearts
'       Queen of Diamonds
'       Two of Clubs
'       Four of Diamonds
'       Jack of Hearts