Anteckning
Åtkomst till den här sidan kräver auktorisering. Du kan prova att logga in eller ändra kataloger.
Åtkomst till den här sidan kräver auktorisering. Du kan prova att ändra kataloger.
Generates a Cauchy distribution.
template<class RealType = double>
class cauchy_distribution
{
public:
// types
typedef RealType result_type;
struct param_type;
// constructor and reset functions
explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
explicit cauchy_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& gen);
template<class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
RealType a() const;
RealType b() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Parameters
- RealType
The floating-point result type, defaults to double. For possible types, see <random>.
Remarks
The template class describes a distribution that produces values of a user-specified integral type, or type double if none is provided, distributed according to the Cauchy Distribution. The following table links to articles about individual members.
cauchy_distribution::a |
cauchy_distribution::param |
|
cauchy_distribution::operator() |
cauchy_distribution::b |
The property functions a() and b() return their respective values for stored distribution parameters a and b.
For more information about distribution classes and their members, see <random>.
For detailed information about the cauchy distribution, see the Wolfram MathWorld article Cauchy Distribution.
Example
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const double a, const double b, const int s) {
// uncomment to use a non-deterministic generator
// std::random_device gen;
std::mt19937 gen(1701);
std::cauchy_distribution<> distr(a, b);
std::cout << std::endl;
std::cout << "min() == " << distr.min() << std::endl;
std::cout << "max() == " << distr.max() << std::endl;
std::cout << "a() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.a() << std::endl;
std::cout << "b() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.b() << std::endl;
// generate the distribution as a histogram
std::map<double, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
int counter = 0;
for (const auto& elem : histogram) {
std::cout << std::fixed << std::setw(11) << ++counter << ": "
<< std::setw(14) << std::setprecision(10) << elem.first << std::endl;
}
std::cout << std::endl;
}
int main()
{
double a_dist = 0.0;
double b_dist = 1;
int samples = 10;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter a floating point value for the 'a' distribution parameter: ";
std::cin >> a_dist;
std::cout << "Enter a floating point value for the 'b' distribution parameter (must be greater than zero): ";
std::cin >> b_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(a_dist, b_dist, samples);
}
Output
First run:
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 0
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
a() == 0.0000000000
b() == 1.0000000000
Distribution for 10 samples:
1: -3.4650392984
2: -2.6369564174
3: -0.0786978867
4: -0.0609632093
5: 0.0589387400
6: 0.0589539764
7: 0.1004592006
8: 1.0965724260
9: 1.4389408122
10: 2.5253154706
Second run:
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 0
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 10
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
a() == 0.0000000000
b() == 10.0000000000
Distribution for 10 samples:
1: -34.6503929840
2: -26.3695641736
3: -0.7869788674
4: -0.6096320926
5: 0.5893873999
6: 0.5895397637
7: 1.0045920062
8: 10.9657242597
9: 14.3894081218
10: 25.2531547063
Third run:
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'a' distribution parameter: 10
Enter a floating point value for the 'b' distribution parameter (must be greater than zero): 10
Enter an integer value for the sample count: 10
min() == -1.79769e+308
max() == 1.79769e+308
a() == 10.0000000000
b() == 10.0000000000
Distribution for 10 samples:
1: -24.6503929840
2: -16.3695641736
3: 9.2130211326
4: 9.3903679074
5: 10.5893873999
6: 10.5895397637
7: 11.0045920062
8: 20.9657242597
9: 24.3894081218
10: 35.2531547063
Requirements
Header: <random>
Namespace: std