Dela via


Datastore Klass

Representerar en lagringsabstraktion över ett Azure Machine Learning-lagringskonto.

Datalager är anslutna till arbetsytor och används för att lagra anslutningsinformation till Azure Storage-tjänster så att du kan referera till dem med namn och inte behöver komma ihåg anslutningsinformationen och hemligheten som används för att ansluta till lagringstjänsterna.

Exempel på Azure Storage-tjänster som stöds och som kan registreras som datalager är:

  • Azure Blob-container

  • Azure-filresurs

  • Azure Data Lake

  • Azure Data Lake Gen2

  • Azure SQL Database

  • Azure Database for PostgreSQL

  • Databricks-filsystem

  • Azure Database for MySQL

Använd den här klassen för att utföra hanteringsåtgärder, inklusive registrering, lista, hämta och ta bort datalager. Datalager för varje tjänst skapas med metoderna i den register* här klassen. När du använder ett datalager för att komma åt data måste du ha behörighet att komma åt dessa data, vilket beror på de autentiseringsuppgifter som registrerats med datalagringen.

Mer information om datalager och hur de kan användas i maskininlärning finns i följande artiklar:

Hämta ett datalager efter namn. Det här anropet skickar en begäran till datalagringstjänsten.

Arv
builtins.object
Datastore

Konstruktor

Datastore(workspace, name=None)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan.

name
str, <xref:optional>

Namnet på dataarkivet, standardvärdet Ingen, som hämtar standarddatalagringen.

Standardvärde: None

Kommentarer

Om du vill interagera med data i dina datalager för maskininlärningsuppgifter, till exempel träning, skapar du en Azure Machine Learning-datauppsättning. Datauppsättningar tillhandahåller funktioner som läser in tabelldata i en Pandas eller Spark DataFrame. Datauppsättningar ger också möjlighet att ladda ned eller montera filer i valfritt format från Azure Blob Storage, Azure Files, Azure Data Lake Storage Gen1, Azure Data Lake Storage Gen2, Azure SQL Database och Azure Database for PostgreSQL. Läs mer om hur du tränar med datauppsättningar.

I följande exempel visas hur du skapar ett datalager som är anslutet till Azure Blob Container.


   # from azureml.exceptions import UserErrorException
   #
   # blob_datastore_name='MyBlobDatastore'
   # account_name=os.getenv("BLOB_ACCOUNTNAME_62", "<my-account-name>") # Storage account name
   # container_name=os.getenv("BLOB_CONTAINER_62", "<my-container-name>") # Name of Azure blob container
   # account_key=os.getenv("BLOB_ACCOUNT_KEY_62", "<my-account-key>") # Storage account key
   #
   # try:
   #     blob_datastore = Datastore.get(ws, blob_datastore_name)
   #     print("Found Blob Datastore with name: %s" % blob_datastore_name)
   # except UserErrorException:
   #     blob_datastore = Datastore.register_azure_blob_container(
   #         workspace=ws,
   #         datastore_name=blob_datastore_name,
   #         account_name=account_name, # Storage account name
   #         container_name=container_name, # Name of Azure blob container
   #         account_key=account_key) # Storage account key
   #     print("Registered blob datastore with name: %s" % blob_datastore_name)
   #
   # blob_data_ref = DataReference(
   #     datastore=blob_datastore,
   #     data_reference_name="blob_test_data",
   #     path_on_datastore="testdata")

Fullständigt exempel är tillgängligt från https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-data-transfer.ipynb

Metoder

get

Hämta ett datalager efter namn. Det här är samma sak som att anropa konstruktorn.

get_default

Hämta standarddatalagringen för arbetsytan.

register_azure_blob_container

Registrera en Azure Blob-container i dataarkivet.

Dataåtkomst baserad på autentiseringsuppgifter (GA) och identitetsbaserad (förhandsversion) stöds. Du kan välja att använda SAS-token eller lagringskontonyckel. Om inga autentiseringsuppgifter sparas med datalagringen används användarnas AAD-token i notebook- eller lokalt Python-program om den anropar någon av dessa funktioner direkt: FileDataset.mount FileDataset.download FileDataset.to_path TabularDataset.to_pandas_dataframe TabularDataset.to_dask_dataframe TabularDataset.to_spark_dataframe TabularDataset.to_parquet_files TabularDataset.to_csv_files beräkningsmålets identitet används i jobb som skickas av Experiment.submit för autentisering med dataåtkomst. Mer information finns här.

register_azure_data_lake

Initiera ett nytt Azure Data Lake Datastore.

Dataåtkomst baserad på autentiseringsuppgifter (GA) och identitetsbaserad (förhandsversion) stöds. Du kan registrera ett datalager med tjänstens huvudnamn för åtkomst till autentiseringsuppgifter. Om inga autentiseringsuppgifter sparas med datalagringen används användarnas AAD-token i notebook- eller lokalt Python-program om den anropar någon av dessa funktioner direkt: FileDataset.mount FileDataset.download FileDataset.to_path TabularDataset.to_pandas_dataframe TabularDataset.to_dask_dataframe TabularDataset.to_spark_dataframe TabularDataset.to_parquet_files TabularDataset.to_csv_files beräkningsmålets identitet används i jobb som skickas av Experiment.submit för autentisering med dataåtkomst. Mer information finns här.

Nedan finns ett exempel på hur du registrerar en Azure Data Lake Gen1 som ett datalager.


   adlsgen1_datastore_name='adlsgen1datastore'

   store_name=os.getenv("ADL_STORENAME", "<my_datastore_name>") # the ADLS name
   subscription_id=os.getenv("ADL_SUBSCRIPTION", "<my_subscription_id>") # subscription id of the ADLS
   resource_group=os.getenv("ADL_RESOURCE_GROUP", "<my_resource_group>") # resource group of ADLS
   tenant_id=os.getenv("ADL_TENANT", "<my_tenant_id>") # tenant id of service principal
   client_id=os.getenv("ADL_CLIENTID", "<my_client_id>") # client id of service principal
   client_secret=os.getenv("ADL_CLIENT_SECRET", "<my_client_secret>") # the secret of service principal

   adls_datastore = Datastore.register_azure_data_lake(
       workspace=ws,
       datastore_name=aslsgen1_datastore_name,
       subscription_id=subscription_id, # subscription id of ADLS account
       resource_group=resource_group, # resource group of ADLS account
       store_name=store_name, # ADLS account name
       tenant_id=tenant_id, # tenant id of service principal
       client_id=client_id, # client id of service principal
       client_secret=client_secret) # the secret of service principal
register_azure_data_lake_gen2

Initiera ett nytt Azure Data Lake Gen2-datalager.

Dataåtkomst baserad på autentiseringsuppgifter (GA) och identitetsbaserad (förhandsversion) stöds. Du kan registrera ett datalager med tjänstens huvudnamn för åtkomst till autentiseringsuppgifter. Om inga autentiseringsuppgifter sparas med datalagringen används användarnas AAD-token i notebook- eller lokalt Python-program om den anropar någon av dessa funktioner direkt: FileDataset.mount FileDataset.download FileDataset.to_path TabularDataset.to_pandas_dataframe TabularDataset.to_dask_dataframe TabularDataset.to_spark_dataframe TabularDataset.to_parquet_files TabularDataset.to_csv_files beräkningsmålets identitet används i jobb som skickas av Experiment.submit för autentisering med dataåtkomst. Mer information finns här.

register_azure_file_share

Registrera en Azure-filresurs i dataarkivet.

Du kan välja att använda SAS-token eller lagringskontonyckel

register_azure_my_sql

Initiera ett nytt Azure MySQL-datalager.

MySQL-datalager kan bara användas för att skapa DataReference som indata och utdata till DataTransferStep i Azure Machine Learning-pipelines. Mer information finns här.

Nedan finns ett exempel på hur du registrerar en Azure MySQL-databas som ett datalager.

register_azure_postgre_sql

Initiera ett nytt Azure PostgreSQL-datalager.

Nedan finns ett exempel på hur du registrerar en Azure PostgreSQL-databas som ett datalager.

register_azure_sql_database

Initiera en ny Azure SQL databasdatalager.

Dataåtkomst baserad på autentiseringsuppgifter (GA) och identitetsbaserad (förhandsversion) stöds. Du kan välja att använda tjänstens huvudnamn eller användarnamn + lösenord. Om inga autentiseringsuppgifter sparas med datalagringen används användarnas AAD-token i notebook- eller lokalt Python-program om den anropar någon av dessa funktioner direkt: FileDataset.mount FileDataset.download FileDataset.to_path TabularDataset.to_pandas_dataframe TabularDataset.to_dask_dataframe TabularDataset.to_spark_dataframe TabularDataset.to_parquet_files TabularDataset.to_csv_files beräkningsmålets identitet används i jobb som skickas av Experiment.submit för autentisering med dataåtkomst. Mer information finns här.

Nedan visas ett exempel på hur du registrerar en Azure SQL databas som ett datalager.

register_dbfs

Initiera ett nytt Databricks-filsystem (DBFS) datalager.

DBFS-datalagringen kan bara användas för att skapa DataReference som indata och PipelineData som utdata till DatabricksStep i Azure Machine Learning-pipelines. Mer information finns här..

register_hdfs

Anteckning

Det här är en experimentell metod och kan ändras när som helst. Mer information finns i https://aka.ms/azuremlexperimental.

Initiera ett nytt HDFS-datalager.

set_as_default

Ange standarddatalagring.

unregister

Avregistrerar datalagringen. den underliggande lagringstjänsten tas inte bort.

get

Hämta ett datalager efter namn. Det här är samma sak som att anropa konstruktorn.

static get(workspace, datastore_name)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan.

datastore_name
Obligatorisk
str, <xref:optional>

Namnet på dataarkivet, standardvärdet Ingen, som hämtar standarddatalagringen.

Returer

Typ Description

Motsvarande datalager för det namnet.

get_default

Hämta standarddatalagringen för arbetsytan.

static get_default(workspace)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan.

Returer

Typ Description

Standarddatalager för arbetsytan

register_azure_blob_container

Registrera en Azure Blob-container i dataarkivet.

Dataåtkomst baserad på autentiseringsuppgifter (GA) och identitetsbaserad (förhandsversion) stöds. Du kan välja att använda SAS-token eller lagringskontonyckel. Om inga autentiseringsuppgifter sparas med datalagringen används användarnas AAD-token i notebook- eller lokalt Python-program om den anropar någon av dessa funktioner direkt: FileDataset.mount FileDataset.download FileDataset.to_path TabularDataset.to_pandas_dataframe TabularDataset.to_dask_dataframe TabularDataset.to_spark_dataframe TabularDataset.to_parquet_files TabularDataset.to_csv_files beräkningsmålets identitet används i jobb som skickas av Experiment.submit för autentisering med dataåtkomst. Mer information finns här.

static register_azure_blob_container(workspace, datastore_name, container_name, account_name, sas_token=None, account_key=None, protocol=None, endpoint=None, overwrite=False, create_if_not_exists=False, skip_validation=False, blob_cache_timeout=None, grant_workspace_access=False, subscription_id=None, resource_group=None)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan.

datastore_name
Obligatorisk
str

Namnet på dataarkivet, skiftlägesokänsligt, får bara innehålla alfanumeriska tecken och _.

container_name
Obligatorisk
str

Namnet på Azure Blob-containern.

account_name
Obligatorisk
str

Namnet på lagringskontot.

sas_token
str, <xref:optional>

En SAS-token för kontot, standardvärdet Ingen. För dataläsning kräver vi minst List-& Läsbehörigheter för containrar &-objekt och för dataskrivning kräver vi dessutom Skriv & Lägg till behörigheter.

Standardvärde: None
account_key
str, <xref:optional>

Åtkomstnycklar för ditt lagringskonto, standardvärdet Ingen.

Standardvärde: None
protocol
str, <xref:optional>

Protokoll som ska användas för att ansluta till blobcontainern. Om ingen är standard https.

Standardvärde: None
endpoint
str, <xref:optional>

Slutpunkten för lagringskontot. Om ingen är standard core.windows.net.

Standardvärde: None
overwrite
bool, <xref:optional>

skriver över ett befintligt datalager. Om dataarkivet inte finns skapar det ett, standardvärdet Falskt

Standardvärde: False
create_if_not_exists
bool, <xref:optional>

skapa blobcontainern om den inte finns, standardvärdet Falskt

Standardvärde: False
skip_validation
bool, <xref:optional>

hoppar över valideringen av lagringsnycklar, standardvärdet Falskt

Standardvärde: False
blob_cache_timeout
int, <xref:optional>

När den här bloben är monterad anger du tidsgränsen för cacheminnet till så här många sekunder. Om inget anges cachelagras som standard ingen tidsgräns (dvs. blobar cachelagras under jobbets varaktighet när de läses).

Standardvärde: None
grant_workspace_access
bool, <xref:optional>

Standardvärdet är Falskt. Ställ in den på Sant för att få åtkomst till data bakom virtuella nätverk från Machine Learning Studio. Detta gör att dataåtkomst från Machine Learning Studio använder arbetsytans hanterade identitet för autentisering och lägger till arbetsytans hanterade identitet som läsare av lagringen. Du måste vara ägare eller administratör för användaråtkomst för lagringen för att kunna anmäla dig. Be administratören att konfigurera den åt dig om du inte har den behörighet som krävs. Läs mer "https://docs.microsoft.com/azure/machine-learning/how-to-enable-studio-virtual-network"

Standardvärde: False
subscription_id
str, <xref:optional>

Prenumerations-ID:t för lagringskontot är som standard Inget.

Standardvärde: None
resource_group
str, <xref:optional>

Lagringskontots resursgrupp är som standard Ingen.

Standardvärde: None

Returer

Typ Description

Blobdatalagringen.

Kommentarer

Om du kopplar lagring från en annan region än arbetsyteregionen kan det resultera i högre svarstid och ytterligare kostnader för nätverksanvändning.

register_azure_data_lake

Initiera ett nytt Azure Data Lake Datastore.

Dataåtkomst baserad på autentiseringsuppgifter (GA) och identitetsbaserad (förhandsversion) stöds. Du kan registrera ett datalager med tjänstens huvudnamn för åtkomst till autentiseringsuppgifter. Om inga autentiseringsuppgifter sparas med datalagringen används användarnas AAD-token i notebook- eller lokalt Python-program om den anropar någon av dessa funktioner direkt: FileDataset.mount FileDataset.download FileDataset.to_path TabularDataset.to_pandas_dataframe TabularDataset.to_dask_dataframe TabularDataset.to_spark_dataframe TabularDataset.to_parquet_files TabularDataset.to_csv_files beräkningsmålets identitet används i jobb som skickas av Experiment.submit för autentisering med dataåtkomst. Mer information finns här.

Nedan finns ett exempel på hur du registrerar en Azure Data Lake Gen1 som ett datalager.


   adlsgen1_datastore_name='adlsgen1datastore'

   store_name=os.getenv("ADL_STORENAME", "<my_datastore_name>") # the ADLS name
   subscription_id=os.getenv("ADL_SUBSCRIPTION", "<my_subscription_id>") # subscription id of the ADLS
   resource_group=os.getenv("ADL_RESOURCE_GROUP", "<my_resource_group>") # resource group of ADLS
   tenant_id=os.getenv("ADL_TENANT", "<my_tenant_id>") # tenant id of service principal
   client_id=os.getenv("ADL_CLIENTID", "<my_client_id>") # client id of service principal
   client_secret=os.getenv("ADL_CLIENT_SECRET", "<my_client_secret>") # the secret of service principal

   adls_datastore = Datastore.register_azure_data_lake(
       workspace=ws,
       datastore_name=aslsgen1_datastore_name,
       subscription_id=subscription_id, # subscription id of ADLS account
       resource_group=resource_group, # resource group of ADLS account
       store_name=store_name, # ADLS account name
       tenant_id=tenant_id, # tenant id of service principal
       client_id=client_id, # client id of service principal
       client_secret=client_secret) # the secret of service principal
static register_azure_data_lake(workspace, datastore_name, store_name, tenant_id=None, client_id=None, client_secret=None, resource_url=None, authority_url=None, subscription_id=None, resource_group=None, overwrite=False, grant_workspace_access=False)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan som det här dataarkivet tillhör.

datastore_name
Obligatorisk
str

Datalagernamnet.

store_name
Obligatorisk
str

Namnet på ADLS-lagringsplatsen.

tenant_id
str, <xref:optional>

Katalog-ID/klientorganisations-ID för tjänstens huvudnamn som används för att komma åt data.

Standardvärde: None
client_id
str, <xref:optional>

Klient-ID/program-ID för tjänstens huvudnamn som används för att komma åt data.

Standardvärde: None
client_secret
str, <xref:optional>

Klienthemligheten för tjänstens huvudnamn som används för att komma åt data.

Standardvärde: None
resource_url
str, <xref:optional>

Resurs-URL:en, som avgör vilka åtgärder som ska utföras i Data Lake-arkivet, om ingen, gör att https://datalake.azure.net/ vi kan utföra filsystemåtgärder som standard.

Standardvärde: None
authority_url
str, <xref:optional>

Den utfärdar-URL som används för att autentisera användaren, standardvärdet är https://login.microsoftonline.com.

Standardvärde: None
subscription_id
str, <xref:optional>

ID:t för prenumerationen som ADLS-arkivet tillhör.

Standardvärde: None
resource_group
str, <xref:optional>

Resursgruppen som ADLS-arkivet tillhör.

Standardvärde: None
overwrite
bool, <xref:optional>

Om du vill skriva över ett befintligt datalager. Om datalagringen inte finns skapas ett. Standardvärdet är Falskt.

Standardvärde: False
grant_workspace_access
bool, <xref:optional>

Standardvärdet är Falskt. Ställ in den på Sant för att få åtkomst till data bakom virtuella nätverk från Machine Learning Studio. Detta gör att dataåtkomst från Machine Learning Studio använder arbetsytans hanterade identitet för autentisering och lägger till arbetsytans hanterade identitet som läsare av lagringen. Du måste vara ägare eller administratör för användaråtkomst för lagringen för att kunna anmäla dig. Be administratören att konfigurera den åt dig om du inte har den behörighet som krävs. Läs mer "https://docs.microsoft.com/azure/machine-learning/how-to-enable-studio-virtual-network"

Standardvärde: False

Returer

Typ Description

Returnerar Azure Data Lake Datastore.

Kommentarer

Om du kopplar lagring från en annan region än arbetsyteregionen kan det resultera i högre svarstid och ytterligare kostnader för nätverksanvändning.

Anteckning

Azure Data Lake Datastore stöder dataöverföring och körning av U-Sql-jobb med Hjälp av Azure Machine Learning-pipelines.

Du kan också använda den som en datakälla för Azure Machine Learning Dataset som kan laddas ned eller monteras på alla beräkningar som stöds.

register_azure_data_lake_gen2

Initiera ett nytt Azure Data Lake Gen2-datalager.

Dataåtkomst baserad på autentiseringsuppgifter (GA) och identitetsbaserad (förhandsversion) stöds. Du kan registrera ett datalager med tjänstens huvudnamn för åtkomst till autentiseringsuppgifter. Om inga autentiseringsuppgifter sparas med datalagringen används användarnas AAD-token i notebook- eller lokalt Python-program om den anropar någon av dessa funktioner direkt: FileDataset.mount FileDataset.download FileDataset.to_path TabularDataset.to_pandas_dataframe TabularDataset.to_dask_dataframe TabularDataset.to_spark_dataframe TabularDataset.to_parquet_files TabularDataset.to_csv_files beräkningsmålets identitet används i jobb som skickas av Experiment.submit för autentisering med dataåtkomst. Mer information finns här.

static register_azure_data_lake_gen2(workspace, datastore_name, filesystem, account_name, tenant_id=None, client_id=None, client_secret=None, resource_url=None, authority_url=None, protocol=None, endpoint=None, overwrite=False, subscription_id=None, resource_group=None, grant_workspace_access=False)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan som det här dataarkivet tillhör.

datastore_name
Obligatorisk
str

Datalagernamnet.

filesystem
Obligatorisk
str

Namnet på Data Lake Gen2-filsystemet.

account_name
Obligatorisk
str

Namnet på lagringskontot.

tenant_id
str, <xref:optional>

Katalog-ID/klientorganisations-ID för tjänstens huvudnamn.

Standardvärde: None
client_id
str, <xref:optional>

Klient-ID/program-ID för tjänstens huvudnamn.

Standardvärde: None
client_secret
str, <xref:optional>

Hemligheten med tjänstens huvudnamn.

Standardvärde: None
resource_url
str, <xref:optional>

Resurs-URL:en, som avgör vilka åtgärder som ska utföras i datasjölagret, gör att https://storage.azure.com/ vi kan utföra filsystemåtgärder som standard.

Standardvärde: None
authority_url
str, <xref:optional>

Den utfärdar-URL som används för att autentisera användaren, standardvärdet är https://login.microsoftonline.com.

Standardvärde: None
protocol
str, <xref:optional>

Protokoll som ska användas för att ansluta till blobcontainern. Om ingen är standard https.

Standardvärde: None
endpoint
str, <xref:optional>

Slutpunkten för lagringskontot. Om ingen är standard core.windows.net.

Standardvärde: None
overwrite
bool, <xref:optional>

Om du vill skriva över ett befintligt datalager. Om datalagringen inte finns skapas ett. Standardvärdet är Falskt.

Standardvärde: False
subscription_id
str, <xref:optional>

ID:t för prenumerationen som ADLS-arkivet tillhör.

Standardvärde: None
resource_group
str, <xref:optional>

Resursgruppen som ADLS-arkivet tillhör.

Standardvärde: None
grant_workspace_access
bool, <xref:optional>

Standardvärdet är Falskt. Ställ in den på Sant för att få åtkomst till data bakom virtuella nätverk från Machine Learning Studio. Detta gör att dataåtkomst från Machine Learning Studio använder arbetsytans hanterade identitet för autentisering och lägger till arbetsytans hanterade identitet som läsare av lagringen. Du måste vara ägare eller administratör för användaråtkomst för lagringen för att kunna anmäla dig. Be administratören att konfigurera den åt dig om du inte har den behörighet som krävs. Läs mer "https://docs.microsoft.com/azure/machine-learning/how-to-enable-studio-virtual-network"

Standardvärde: False

Returer

Typ Description

Returnerar Azure Data Lake Gen2-dataarkivet.

Kommentarer

Om du kopplar lagring från en annan region än arbetsyteregionen kan det resultera i högre svarstid och ytterligare kostnader för nätverksanvändning.

register_azure_file_share

Registrera en Azure-filresurs i dataarkivet.

Du kan välja att använda SAS-token eller lagringskontonyckel

static register_azure_file_share(workspace, datastore_name, file_share_name, account_name, sas_token=None, account_key=None, protocol=None, endpoint=None, overwrite=False, create_if_not_exists=False, skip_validation=False)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan som det här dataarkivet tillhör.

datastore_name
Obligatorisk
str

Namnet på dataarkivet, skiftlägesokänsligt, får bara innehålla alfanumeriska tecken och _.

file_share_name
Obligatorisk
str

Namnet på azure-filcontainern.

account_name
Obligatorisk
str

Namnet på lagringskontot.

sas_token
str, <xref:optional>

En SAS-token för kontot, standardvärdet Ingen. För dataläsning kräver vi minst List-& Läsbehörigheter för containrar &-objekt och för dataskrivning kräver vi dessutom Skriv & Lägg till behörigheter.

Standardvärde: None
account_key
str, <xref:optional>

Åtkomstnycklar för ditt lagringskonto, standardvärdet Ingen.

Standardvärde: None
protocol
str, <xref:optional>

Det protokoll som ska användas för att ansluta till filresursen. Om ingen är standard https.

Standardvärde: None
endpoint
str, <xref:optional>

Filresursens slutpunkt. Om ingen är standard core.windows.net.

Standardvärde: None
overwrite
bool, <xref:optional>

Om du vill skriva över ett befintligt datalager. Om datalagringen inte finns skapas ett. Standardvärdet är Falskt.

Standardvärde: False
create_if_not_exists
bool, <xref:optional>

Om filresursen ska skapas om den inte finns. Standardvärdet är Falskt.

Standardvärde: False
skip_validation
bool, <xref:optional>

Om du vill hoppa över valideringen av lagringsnycklar. Standardvärdet är Falskt.

Standardvärde: False

Returer

Typ Description

Fildatalagringen.

Kommentarer

Om du kopplar lagring från en annan region än arbetsyteregionen kan det resultera i högre svarstid och ytterligare kostnader för nätverksanvändning.

register_azure_my_sql

Initiera ett nytt Azure MySQL-datalager.

MySQL-datalager kan bara användas för att skapa DataReference som indata och utdata till DataTransferStep i Azure Machine Learning-pipelines. Mer information finns här.

Nedan finns ett exempel på hur du registrerar en Azure MySQL-databas som ett datalager.

static register_azure_my_sql(workspace, datastore_name, server_name, database_name, user_id, user_password, port_number=None, endpoint=None, overwrite=False, **kwargs)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan som det här dataarkivet tillhör.

datastore_name
Obligatorisk
str

Datalagernamnet.

server_name
Obligatorisk
str

MySQL-servernamnet.

database_name
Obligatorisk
str

Namnet på MySQL-databasen.

user_id
Obligatorisk
str

Användar-ID för MySQL-servern.

user_password
Obligatorisk
str

Användarlösenordet för MySQL-servern.

port_number
str

Portnumret för MySQL-servern.

Standardvärde: None
endpoint
str, <xref:optional>

Slutpunkten för MySQL-servern. Om ingen är standard mysql.database.azure.com.

Standardvärde: None
overwrite
bool, <xref:optional>

Om du vill skriva över ett befintligt datalager. Om datalagringen inte finns skapas ett. Standardvärdet är Falskt.

Standardvärde: False

Returer

Typ Description

Returnerar MySQL-databasens datalager.

Kommentarer

Om du kopplar lagring från en annan region än arbetsyteregionen kan det resultera i högre svarstid och ytterligare kostnader för nätverksanvändning.


   mysql_datastore_name="mysqldatastore"
   server_name=os.getenv("MYSQL_SERVERNAME", "<my_server_name>") # FQDN name of the MySQL server
   database_name=os.getenv("MYSQL_DATBASENAME", "<my_database_name>") # Name of the MySQL database
   user_id=os.getenv("MYSQL_USERID", "<my_user_id>") # The User ID of the MySQL server
   user_password=os.getenv("MYSQL_USERPW", "<my_user_password>") # The user password of the MySQL server.

   mysql_datastore = Datastore.register_azure_my_sql(
       workspace=ws,
       datastore_name=mysql_datastore_name,
       server_name=server_name,
       database_name=database_name,
       user_id=user_id,
       user_password=user_password)

register_azure_postgre_sql

Initiera ett nytt Azure PostgreSQL-datalager.

Nedan finns ett exempel på hur du registrerar en Azure PostgreSQL-databas som ett datalager.

static register_azure_postgre_sql(workspace, datastore_name, server_name, database_name, user_id, user_password, port_number=None, endpoint=None, overwrite=False, enforce_ssl=True, **kwargs)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan som det här dataarkivet tillhör.

datastore_name
Obligatorisk
str

Datalagernamnet.

server_name
Obligatorisk
str

PostgreSQL-servernamnet.

database_name
Obligatorisk
str

PostgreSQL-databasnamnet.

user_id
Obligatorisk
str

Användar-ID för PostgreSQL-servern.

user_password
Obligatorisk
str

Användarlösenordet för PostgreSQL-servern.

port_number
str

PostgreSQL-serverns portnummer

Standardvärde: None
endpoint
str, <xref:optional>

Slutpunkten för PostgreSQL-servern. Om Ingen är standard postgres.database.azure.com.

Standardvärde: None
overwrite
bool, <xref:optional>

Om du vill skriva över ett befintligt datalager. Om datalagringen inte finns skapas ett. Standardvärdet är Falskt.

Standardvärde: False
enforce_ssl

Anger SSL-krav för PostgreSQL-server. Standardvärdet är True.

Standardvärde: True

Returer

Typ Description

Returnerar PostgreSQL-databasens datalager.

Kommentarer

Om du kopplar lagring från en annan region än arbetsyteregionen kan det resultera i högre svarstid och ytterligare kostnader för nätverksanvändning.


   psql_datastore_name="postgresqldatastore"
   server_name=os.getenv("PSQL_SERVERNAME", "<my_server_name>") # FQDN name of the PostgreSQL server
   database_name=os.getenv("PSQL_DATBASENAME", "<my_database_name>") # Name of the PostgreSQL database
   user_id=os.getenv("PSQL_USERID", "<my_user_id>") # The database user id
   user_password=os.getenv("PSQL_USERPW", "<my_user_password>") # The database user password

   psql_datastore = Datastore.register_azure_postgre_sql(
       workspace=ws,
       datastore_name=psql_datastore_name,
       server_name=server_name,
       database_name=database_name,
       user_id=user_id,
       user_password=user_password)

register_azure_sql_database

Initiera en ny Azure SQL databasdatalager.

Dataåtkomst baserad på autentiseringsuppgifter (GA) och identitetsbaserad (förhandsversion) stöds. Du kan välja att använda tjänstens huvudnamn eller användarnamn + lösenord. Om inga autentiseringsuppgifter sparas med datalagringen används användarnas AAD-token i notebook- eller lokalt Python-program om den anropar någon av dessa funktioner direkt: FileDataset.mount FileDataset.download FileDataset.to_path TabularDataset.to_pandas_dataframe TabularDataset.to_dask_dataframe TabularDataset.to_spark_dataframe TabularDataset.to_parquet_files TabularDataset.to_csv_files beräkningsmålets identitet används i jobb som skickas av Experiment.submit för autentisering med dataåtkomst. Mer information finns här.

Nedan visas ett exempel på hur du registrerar en Azure SQL databas som ett datalager.

static register_azure_sql_database(workspace, datastore_name, server_name, database_name, tenant_id=None, client_id=None, client_secret=None, resource_url=None, authority_url=None, endpoint=None, overwrite=False, username=None, password=None, subscription_id=None, resource_group=None, grant_workspace_access=False, **kwargs)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan som det här dataarkivet tillhör.

datastore_name
Obligatorisk
str

Datalagernamnet.

server_name
Obligatorisk
str

SQL-servernamnet. För fullständigt kvalificerade domännamn som "sample.database.windows.net" ska server_name-värdet vara "sample" och slutpunktsvärdet ska vara "database.windows.net".

database_name
Obligatorisk
str

SQL-databasnamnet.

tenant_id
str

Katalog-ID/klientorganisations-ID för tjänstens huvudnamn.

Standardvärde: None
client_id
str

Klient-ID/program-ID för tjänstens huvudnamn.

Standardvärde: None
client_secret
str

Hemligheten med tjänstens huvudnamn.

Standardvärde: None
resource_url
str, <xref:optional>

Resurs-URL:en, som avgör vilka åtgärder som ska utföras i SQL-databasarkivet, om Ingen, är standardvärdet https://database.windows.net/.

Standardvärde: None
authority_url
str, <xref:optional>

Den utfärdar-URL som används för att autentisera användaren, standardvärdet är https://login.microsoftonline.com.

Standardvärde: None
endpoint
str, <xref:optional>

SQL-serverns slutpunkt. Om Ingen är standard database.windows.net.

Standardvärde: None
overwrite
bool, <xref:optional>

Om du vill skriva över ett befintligt datalager. Om datalagringen inte finns skapas ett. Standardvärdet är Falskt.

Standardvärde: False
username
str

Användarnamnet för databasanvändaren för att komma åt databasen.

Standardvärde: None
password
str

Lösenordet för databasanvändaren för åtkomst till databasen.

Standardvärde: None
skip_validation
Obligatorisk
bool, <xref:optional>

Om du vill hoppa över verifieringen av att ansluta till SQL-databasen. Standardvärdet är Falskt.

subscription_id
str, <xref:optional>

ID:t för prenumerationen som ADLS-arkivet tillhör.

Standardvärde: None
resource_group
str, <xref:optional>

Resursgruppen som ADLS-arkivet tillhör.

Standardvärde: None
grant_workspace_access
bool, <xref:optional>

Standardvärdet är Falskt. Ställ in den på Sant för att få åtkomst till data bakom virtuella nätverk från Machine Learning Studio. Detta gör att dataåtkomst från Machine Learning Studio använder arbetsytans hanterade identitet för autentisering och lägger till arbetsytans hanterade identitet som läsare av lagringen. Du måste vara ägare eller administratör för användaråtkomst för lagringen för att kunna anmäla dig. Be administratören att konfigurera den åt dig om du inte har den behörighet som krävs. Läs mer "https://docs.microsoft.com/azure/machine-learning/how-to-enable-studio-virtual-network"

Standardvärde: False

Returer

Typ Description

Returnerar SQL-databasens datalager.

Kommentarer

Om du kopplar lagring från en annan region än arbetsyteregionen kan det resultera i högre svarstid och ytterligare kostnader för nätverksanvändning.


   sql_datastore_name="azuresqldatastore"
   server_name=os.getenv("SQL_SERVERNAME", "<my_server_name>") # Name of the Azure SQL server
   database_name=os.getenv("SQL_DATABASENAME", "<my_database_name>") # Name of the Azure SQL database
   username=os.getenv("SQL_USER_NAME", "<my_sql_user_name>") # The username of the database user.
   password=os.getenv("SQL_USER_PASSWORD", "<my_sql_user_password>") # The password of the database user.

   sql_datastore = Datastore.register_azure_sql_database(
       workspace=ws,
       datastore_name=sql_datastore_name,
       server_name=server_name,  # name should not contain fully qualified domain endpoint
       database_name=database_name,
       username=username,
       password=password,
       endpoint='database.windows.net')

register_dbfs

Initiera ett nytt Databricks-filsystem (DBFS) datalager.

DBFS-datalagringen kan bara användas för att skapa DataReference som indata och PipelineData som utdata till DatabricksStep i Azure Machine Learning-pipelines. Mer information finns här..

static register_dbfs(workspace, datastore_name)

Parametrar

Name Description
workspace
Obligatorisk

Arbetsytan som det här dataarkivet tillhör.

datastore_name
Obligatorisk
str

Datalagernamnet.

Returer

Typ Description

Returnerar DBFS-dataarkivet.

Kommentarer

Om du kopplar lagring från en annan region än arbetsyteregionen kan det resultera i högre svarstid och ytterligare kostnader för nätverksanvändning.

register_hdfs

Anteckning

Det här är en experimentell metod och kan ändras när som helst. Mer information finns i https://aka.ms/azuremlexperimental.

Initiera ett nytt HDFS-datalager.

static register_hdfs(workspace, datastore_name, protocol, namenode_address, hdfs_server_certificate, kerberos_realm, kerberos_kdc_address, kerberos_principal, kerberos_keytab=None, kerberos_password=None, overwrite=False)

Parametrar

Name Description
workspace
Obligatorisk

arbetsytan som det här dataarkivet tillhör

datastore_name
Obligatorisk
str

datalagernamnet

protocol
Obligatorisk
str eller <xref:_restclient.models.enum>

Det protokoll som ska användas vid kommunikation med HDFS-klustret. http eller https. Möjliga värden är: "http", "https"

namenode_address
Obligatorisk
str

IP-adressen eller DNS-värdnamnet för HDFS-namnnoden. Du kan också inkludera en port.

hdfs_server_certificate
Obligatorisk
str, <xref:optional>

Sökvägen till TLS-signeringscertifikatet för HDFS-namnnoden om du använder TLS med ett självsignerat certifikat.

kerberos_realm
Obligatorisk
str

Kerberos-sfären.

kerberos_kdc_address
Obligatorisk
str

IP-adressen eller DNS-värdnamnet för Kerberos KDC.

kerberos_principal
Obligatorisk
str

Kerberos-huvudnamnet som ska användas för autentisering och auktorisering.

kerberos_keytab
Obligatorisk
str, <xref:optional>

Sökvägen till nyckelfliksfilen som innehåller de nycklar som motsvarar Kerberos-huvudnamnet. Ange antingen detta eller ett lösenord.

kerberos_password
Obligatorisk
str, <xref:optional>

Lösenordet som motsvarar Kerberos-huvudnamnet. Ange antingen detta eller sökvägen till en nyckelfliksfil.

overwrite
Obligatorisk
bool, <xref:optional>

skriver över ett befintligt datalager. Om datalagringen inte finns skapas ett. Standardvärdet är Falskt.

set_as_default

Ange standarddatalagring.

set_as_default()

Parametrar

Name Description
datastore_name
Obligatorisk
str

Namnet på dataarkivet.

unregister

Avregistrerar datalagringen. den underliggande lagringstjänsten tas inte bort.

unregister()